People Counting by Dense WiFi MIMO Networks: Channel Features and Machine Learning Algorithms.

Sensors (Basel)

Politecnico di Milano, Department of Management, Economics and Industrial Engineering (DIG), Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Published: August 2019

Subject counting systems are extensively used in ambient intelligence applications, such as smart home, smart building and smart retail scenarios. In this paper, we investigate the problem of transforming an unmodified WiFi radio infrastructure into a flexible sensing system for passive subject counting. We first introduce the multi-dimensional channel features that capture the subject presence. Then, we compare Bayesian and neural network based machine learning tools specialized for subject discrimination and counting. Ensemble classification is used to leverage space-frequency diversity and combine learning tools trained with different channel features. A combination of multiple models is shown to improve the counting accuracy. System design is based on a dense network of WiFi devices equipped with multiple antennas. Experimental validation is conducted in an indoor space featuring up to five moving people. Real-time computing and practical solutions for cloud migration are also considered. The proposed approach for passive counting gives detection results with 99% average accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721073PMC
http://dx.doi.org/10.3390/s19163450DOI Listing

Publication Analysis

Top Keywords

channel features
12
machine learning
8
subject counting
8
learning tools
8
counting
5
people counting
4
counting dense
4
dense wifi
4
wifi mimo
4
mimo networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!