That an alteration of the intestinal permeability is associated with gut barrier function has been increasingly evident, which plays an important role in human and animal health. Bisphenol A (BPA), an industrial compound used worldwide, has recently been classified as an environmental pollutant. One of our earlier studies has demonstrated that BPA disrupts the intestinal barrier function by inducing apoptosis and inhibiting cell proliferation in the human colonic epithelial cells line. In this study, we investigated the effects of dietary BPA uptake on the colonic barrier function in mice, as well as the intestinal permeability. Dietary BPA uptake was observed to destroy the morphology of the colonic epithelium and increase the pathology score. The levels of endotoxin, diamine peroxidase, D-lactate, and zonulin were found to have been significantly elevated in both plasma and colonic mucosa. A decline in the number of intestinal goblet cells and in mucin 2 gene expression was observed in the mice belonging to the BPA group. The results of immunohistochemistry revealed that the expression of tight junction proteins (ZO-1, occludin, and claudin-1) in colonic epithelium of BPA mice decreased significantly, and their gene abundance was also inhibited. Moreover, dietary BPA uptake was also found to have significantly reduced colonic microbial diversity and altered microbial structural composition. The functional profiles of colonic bacterial community exhibited adverse effects of dietary BPA intake on the endocrine and digestive systems, as well as the transport and catabolism functions. Collectively, our study highlighted that dietary BPA increased the colonic permeability, and this effect was closely related to the disruption of intestinal chemistry and physical and biological barrier functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.112960 | DOI Listing |
Children (Basel)
January 2025
Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, 34394 Istanbul, Türkiye.
This review examines the inconsistent effects of endocrine-disrupting chemicals (EDCs) and pollutants on pubertal timing, emphasizing the methodological challenges contributing to variability in findings. Data from nine key studies reveal that chemicals such as BPA, phthalates, and PFAS impact pubertal onset differently based on exposure timing, dosage, and sex. For instance, BPA is linked to earlier puberty in girls but delayed onset in boys, while other EDCs show mixed effects across populations.
View Article and Find Full Text PDFJ Xenobiot
January 2025
Human Microbiota Laboratory, Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain.
Dietary exposure to the plasticiser bisphenol A (BPA), an obesogenic and endocrine disruptor from plastic and epoxy resin industries, remains prevalent despite regulatory restriction and food safety efforts. BPA can be accumulated in humans and animals, potentially exerting differential health effects based on individual metabolic capacity. This pilot study examines the impact of direct ex vivo BPA exposure on the gut microbiota of obese and normal-weight children, using 16S rRNA amplicon sequencing and anaerobic culturing combined methods.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. Electronic address:
Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity.
View Article and Find Full Text PDFEnviron Int
January 2025
Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan. Electronic address:
The substitution of bisphenol A (BPA) with structurally similar analogs has raised concerns due to their comparable estrogenic activities. Considering the high consumption of plant-based foods, assessing the risks posed by bisphenols (BPs) in such dietary sources is essential. However, limited exposure and animal toxicological data on BP analogs hinder comprehensive risk assessments.
View Article and Find Full Text PDFMetabolites
December 2024
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
Background: The gut microbiota are an important interface between the host and the environment, mediating the host's interactions with nutritive and non-nutritive substances. Dietary contaminants like Bisphenol A (BPA) may disrupt the microbial community, leaving the host susceptible to additional exposures and pathogens. BPA has long been a controversial and well-studied contaminant, so its structural analogues like Bisphenol S (BPS) are replacing it in consumer products, but have not been well studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!