Purpose: Postoperative radiation therapy (RT) delivered to lymphatics is associated with an increased risk of developing lymphedema. Reported effects of RT on lymphatic vessels have varied, however, possibly because of the use of different animal models with varying surgery and radiation schedules and the inability to directly and longitudinally image lymphatics in vivo. Here we report, using noninvasive imaging, changes in lymphatic remodeling and function in response to surgery and RT in a mouse model.
Methods And Materials: Popliteal lymphadenectomy in mice preceded single-dose gamma irradiation of the lower extremity at a single dose of 0, 20, or 40 Gy. The right hind limb of intact mice was also radiated with 4 fractions (4 × 5 Gy). Near-infrared fluorescence lymphatic imaging with indocyanine green was performed over 6 months to monitor lymphatic vessel remodeling.
Results: Postoperative mice treated with 20 Gy showed transient changes in lymphatic drainage, exacerbated vessel remodeling including qualitative vessel dilation and abnormal indocyanine green pooling from week 1 to 2, and initiation of restoration of lymphatic vessels, although dermal backflow was occasionally observed. Mice treated with 40 Gy showed steadily increasing lymphatic impairment until week 3 and extravasation of dye and dermal backflow in weeks 4 to 25. The ankles of mice treated with 40 Gy were significantly swollen from weeks 2 to 4 as compared with mice treated with 0 Gy or 20 Gy. Mice that received fractionated RT exhibited lymphatic vessel remodeling similar to remodeling that occurred when a single 20 Gy dose was given; however, dermal backflow did not resolve as it did in the case of a single 20 Gy dose.
Conclusions: The degree of nonreversing lymphatic damage seen in our mouse model was dependent on RT dose. Our results suggest that near-infrared fluorescence lymphatic imaging detection of early lymphatic changes can be used to predict development of lymphedema in patients with cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2019.07.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!