Estrogens have many beneficial effects in the brain. Previously, we evaluated the effects of two models of menopause (surgical vs. transitional) on multiple monoaminergic endpoints in different regions of the adult rat brain in comparison with levels in gonadally intact rats. Here we evaluated the effects of estrogen receptor (ER) agonist treatments in these same two models of menopause. Neurochemical endpoints were evaluated in the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) of adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD), after 1- and 6-weeks treatment with 17β-estradiol (E2), or with selective ERα (PPT), ERβ (DPN), or GPR30 (G-1) agonists. Endpoints included serotonin (5-HT) and 5-Hydroxyindoleacetic acid, dopamine (DA), 3,4-Dihydroxyphenylacetic acid and homovanillic acid, norepinephrine (NE) and epinephrine, as well as the amino acids tryptophan (TRP) and tyrosine (TYR). Significant differences between the models were detected. OVX rats were much more sensitive to ER agonist treatments than VCD-treated rats. Significant differences between brain regions also were detected. Within OVX rats, more agonist effects were detected in the HPC than in any other region. One interesting finding was the substantial decrease in TRP and TYR detected in the HPC and FCX in response to agonist treatments, particularly in OVX rats. This is on top of the substantial decreases in TRP and TYR previously reported one week after OVX or VCD-treatments in comparison with gonadally intact controls. Other interesting findings included increases in the levels of 5-HT, DA, and NE in the HPC of OVX rats treated with DPN, increases in DA detected in the FCX of OVX rats treated with any of the ER agonists, and increases in 5-HT and DA detected in the STR of OVX rats treated with E2. Many effects that were observed after 1-week of treatment were no longer observed after 6-weeks of treatment, demonstrating that effects were temporary despite continued agonist treatment. Collectively, the results demonstrate significant differences in the effects of ER agonists on monoaminergic endpoints in OVX vs. VCD-treated rats that also were brain region-specific and time dependent. The fact that agonist treatments had lesser effects in VCD treated rats than in OVX rats may help to explain reports of lesser effects of estrogen replacement on cognitive performance in women that have undergone transitional vs. surgical menopause.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717664 | PMC |
http://dx.doi.org/10.1016/j.mce.2019.110533 | DOI Listing |
Chem Pharm Bull (Tokyo)
December 2024
Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.
Osteoporosis is treated with oral and parenteral resorption inhibitors and parenteral osteogenic drugs. However, orally active small-molecule osteogenic drugs are not clinically available. Natural coumarin derivatives, such as osthole, exert osteoblastogenic effects.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Human Biology to the Physiology, School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia.
Rheumatoid arthritis (RA) can cause blood pressure (BP) elevation in estrogen-deficient, post-menopausal women; however, the underlying mechanisms are not well understood. In this study, the aortic involvement and its underlying mechanisms that contribute to the BP elevation in estrogen-deficient, RA condition were identified. Ovariectomy was performed to create a state of estrogen deficiency and RA was then induced in ovariectomized rats by using incomplete Freund's adjuvant and immune-mediated collagen type-II.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
Estrogen (E2) deficiency is a risk factor for cardiovascular disease (CVD), however, the exact mechanism for the E2 protective effect on CVD remains unclear. This study aimed to investigate the estrogen receptor (ER) and non-receptor mediated effects of E2 treatment on the cardiac expression of adenosine monophosphate-dependent protein kinase (AMPK), autophagic, mitophagy and mitochondrial homeostasis-regulating genes in ovariectomized (OVX) rats. Female rats were divided into two main groups; sham and bilaterally OVX rats, then each group was subdivided into four subgroups according to treatment; untreated, subcutaneously treated with E2 (30 μg/kg), or Fulvestrant (F) (5 mg/Kg), or a combination of both drugs for 28 days.
View Article and Find Full Text PDFNutrients
November 2024
Laboratory for Research of the Musculoskeletal System "Th. Garofalides", School of Medicine, National & Kapodistrian University of Athens, KAT Hospital, 14561 Athens, Greece.
: The beneficial effects of ω-3 fatty acids on the cardiovascular system have been observed in many epidemiological studies; however, their effects on the skeleton and in particular on postmenopausal bone loss appear to vary. The present study's purpose was to investigate the effects of oral fish oil (rich in ω-3 fatty acids) consumption on bone, plasma, and inflammation parameters in the ovariectomized (Ovx) rat model of osteopenia. : Four Groups of ten rats each were separated into Non-Ovx receiving fish oil (2.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Kunming Medical University, Kunming, 650600, People's Republic of China.
Unlabelled: In China, Osteoking is a commonly used treatment and preventive measure for osteoporosis. The pathophysiology of osteoporosis is closely associated with apoptosis; however, it remains unclear whether the role of Osteoking in promoting bone formation is linked to apoptosis.
Aim Of Study: This study aims to investigate whether Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via the PI3K/AKT signaling pathway and to conduct a detailed exploration of this mechanism.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!