G-protein coupled receptors (GPCRs) typically have an amphipathic helix ("helix 8") immediately C-terminal to the transmembrane helical bundle. To date, a number of functional roles have been associated with GPCR helix 8 segments, but structure-function analysis for this region remains limited. Here, we examine helix 8 of the apelin receptor (AR or APJ), a class A GPCR with wide physiological and pathophysiological relevance. The 71 residue C-terminal tail of the AR is primarily intrinsically disordered, with a detergent micelle-induced increase in helical character. This helicity was localized to the helix 8 region, in good agreement with the recent AR crystal structure. A series of helix 8 mutants were made to reduce helicity, remove amphipathy, or flip the hydrophobic and hydrophilic faces. Each mutant AR was tested both biophysically, in the isolated C-terminal tail, and functionally in HEK 293 T cells, for full-length AR. In all instances, micelle interactions were maintained, and steady-state AR expression was efficient. However, removal of amphipathy or helical character led to a significant decrease in cell surface localization. Flipping of helix 8 amphipathic topology restored cell surface localization to some degree, but still was significantly reduced relative to wild-type. Structural integrity, amphipathy to drive membrane association, and correct topology of helix 8 membrane association all thus appear important for cell surface localization of the AR. This behavior correlates well to GPCR C-terminal tail sequence motifs, implying that these serve to specify key topological features of helix 8 and its proximity to the transmembrane domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2019.183036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!