Studies of membrane protein structure and function often rely on reconstituting the protein into lipid bilayers through the formation of liposomes. Many measurements conducted in proteoliposomes, e.g. transport rates, single-molecule dynamics, monomer-oligomer equilibrium, require some understanding of the occupancy statistics of the liposome population for correct interpretation of the results. In homogenous liposomes, this is easy to calculate as the act of protein incorporation can be described by the Poisson distribution. However, in reality, liposomes are heterogeneous, which alters the statistics of occupancy in several ways. Here, we determine the liposome occupancy distribution for membrane protein reconstitution while considering liposome size heterogeneity. We calculate the protein occupancy for a homogenous population of liposomes with radius r = 200 nm, representing an idealization of vesicles extruded through 400 nm pores and compare it to the right-skewed distribution of 400 nm 2:1 POPE:POPG vesicles. As is the case for E. coli polar lipids, this synthetic composition yields a sub-population of small liposomes, 25-30 nm in radius with a long tail of larger vesicles. Previously published microscopy data of the co-localization of the CLC-ec1 Cl/H transporter with liposomes, and vesicle occupancy measurements using functional transport assays, shows agreement with the heterogeneous 2:1 POPE:POPG population. Next, distributions of 100 nm and 30 nm extruded 2:1 POPE:POPG liposomes are measured by cryo-electron microscopy, demonstrating that extrusion through smaller pores does not shift the peak, but reduces polydispersity arising from large liposomes. Single-molecule photobleaching analysis of CLC-ec1-Cy5 shows the 30 nm extruded population increases the 'Poisson-dilution' range, reducing the probability of vesicles with more than one protein at higher protein/lipid densities. These results demonstrate that the occupancy distributions of membrane proteins into vesicles can be accurately predicted in heterogeneous populations with experimental knowledge of the liposome size distribution. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899186 | PMC |
http://dx.doi.org/10.1016/j.bbamem.2019.183033 | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFClin Exp Med
January 2025
Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!