Antidepressant-Like Effect of Ferulic Acid via Promotion of Energy Metabolism Activity.

Mol Nutr Food Res

Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.

Published: October 2019

Scope: Ferulic acid (FA), a natural phenolic phytochemical abundantly present in whole grains, herbs, and dried fruits, exhibits anti-inflammatory, antioxidant, and neuroprotective effects. In the present study, the antidepressant-like effects of FA in male ICR mice using tail suspension test (TST) are investigated and its molecular mechanisms are explored.

Methods And Results: Oral administration of FA at a dose of 5 mg kg for 7 days significantly reduces immobility of mice compared to vehicle-administered control group. Microarray and real-time PCR analyses reveal that FA upregulates the expression of several genes associated with cell survival and proliferation, energy metabolism, and dopamine synthesis in mice limbic system of brain. Interestingly, it is found that FA, unlike antidepressant drug bupropion, strongly promotes energy metabolism. Additionally, FA increases catecholamine (dopamine and noradrenaline), brain-derived neurotrophic factor, and ATP levels, and decreases glycogen levels in the limbic system of the mice brain.

Conclusion: The research provides the first evidence that FA enhances energy production, which can be the underlying mechanism of the antidepressant-like effects of FA observed in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790570PMC
http://dx.doi.org/10.1002/mnfr.201900327DOI Listing

Publication Analysis

Top Keywords

ferulic acid
8
antidepressant-like effects
8
energy metabolism
8
limbic system
8
antidepressant-like ferulic
4
acid promotion
4
promotion of energy
4
of energy metabolism
4
metabolism activity
4
activity scope
4

Similar Publications

Maternal obesity predisposes offspring to type 2 diabetes (T2D) through a direct chronic effect of lipids on pancreatic β-cell neogenesis. β-cells produce FABP3 to bind and metabolize fatty acids. Ferulic acid (FA) is a natural product that may inhibit fatty acids' binding to FABP3, preventing their toxicity.

View Article and Find Full Text PDF

Polyphenols are known to interact with starch to form the V-type inclusion complex or the noninclusive complex. It is hypothesized that the addition of polyphenols could improve the properties of Chinese yam (Dioscorea opposita Thunb.) starch, and the properties of the complexes could be regulated by controlling the additive amount of polyphenols.

View Article and Find Full Text PDF

Although the gluten-free market is expanding and offers a variety of products, there are still some deficiencies in the nutritional and sensory quality of these products. Therefore, this study explores the bioaccessibility of phenolic compounds, nutritional quality, and textural properties of gluten-free muffins enriched with artichoke leaves and green lentil protein (GLP) isolate, two novel ingredients introduced together for the first time in this context. The incorporation of GLP isolate aims to enhance the protein content, while artichoke leaves are evaluated for its potential to improve phenolic content and antioxidant activity.

View Article and Find Full Text PDF

Phenolic acid-rich fraction from Anisopus mannii (PhAM) contains abundance of ferulic acid, gallic acid, protocatechuic acid, and syringic acid. Among other glycolytic enzymes, in vitro, PhAM counteracted the binding of sodium orthovanadate to phosphofructokinase 1 (PFK-1), improving its activities. In a rat model of diet-induced diabetes, PhAM monotherapy reduced HbA1c by an average of 0.

View Article and Find Full Text PDF

Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!