To obtain genetic information about the germplasm of tea (Camellia sinensis L.) in Japan, 167 accessions including 138 var. sinensis (96 Japanese var. sinensis and 42 exotic var. sinensis) and 29 Assam hybrids were analyzed using single nucleotide polymorphisms (SNPs) markers identified by double-digest restriction-site-associated DNA sequencing (ddRAD-seq) analysis. Approximately 10,000 SNPs were identified by ddRAD-seq and were mapped across the whole genome. The 167 tea accessions were classified into three genetic subgroups: (1) Japanese var. sinensis; (2) Japanese and exotic var. sinensis; (3) Assam hybrids and exotic var. sinensis. Leaf morphology varied widely within each genetic subgroups. The 96 Japanese var. sinensis were classified into four genetic subgroups as follows; two subgroups of Shizuoka (the largest tea production region) landraces, Uji (most ancient tea production region) landraces, and the pedigree of 'Yabukita', the leading green tea cultivar in Japan. These results indicated that the SNP markers obtained from ddRAD-seq are a useful tool to investigate the geographical background and breeding history of Japanese tea. This genetic information revealed the ancestral admixture situation of the 'Yabukita' pedigree, and showed that the genome structure of 'Yabukita' is clearly different from those of other Japanese accessions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687169 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220981 | PLOS |
Cureus
December 2024
Pharmaceutical Biotechnology and Microbiology, Vidya Herbs USA, Bunnell, USA.
Int J Biol Macromol
December 2024
Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China. Electronic address:
The microRNAs and phasiRNAs of plant are small non-coding RNAs with important functions through regulating gene expression at the post-transcriptional level. However, identifying miRNAs, phasiRNAs and their target genes from numerous sequencing raw data requires multiple software and command-line operations, which are time-consuming and labor-intensive for non-model plants. Therefore, we present CsMPDB (miRNAs and phasiRNAs database of Camellia sinensis), an interactive web application with multiple analysis modules developed to visualize and explore miRNA and phasiRNA in tea plants based on 259 sRNA-seq samples and 24 degradome-seq samples in NCBI.
View Article and Find Full Text PDFPlant Dis
December 2024
College of Landscape Architecture and Horticulture, Kunming, China;
Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).
View Article and Find Full Text PDFStud Mycol
December 2024
Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
The species complex (FLSC) currently comprises 11 phylogenetic species, including accepted names such as , , and , which have mostly been reported in association with citrus and coffee. Many varieties were documented by Wollenweber & Reinking (1935), which is indicative of a wider diversity of species within this group. The lack of type material in some cases, especially for the older names, means that definition by molecular phylogeny is very difficult.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China.
Flavan-3-ol oligomers (FLOs), including proanthocyanidins (PAs) and theasinensins (TSs), contribute greatly to the flavor and bioactivity of the tea beverage. Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry has been widely used in profiling a wide range of compounds in tea. However, the detection and identification of FLOs with low concentration and high structural diversity remain meaningful yet challenging work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!