Large-scale industrial application of flexible device has called for development of transfer methods that deliver high yield and stability. Here, we show an ultrafast and chemically stable transfer method by using a water-soluble NaCl sacrificial layer. Extremely thin (10 nm) and large-area (4 in. wafer) free-standing Au nanomembranes (NMs) prepared on silicon substrate were successfully transferred to flexible PDMS substrate by dissolving the NaCl sacrificial layer. This transfer method enables highly transparent and electrically conductive Au NMs on PDMS substrate. To transfer a multilayered optoelectronic device, we fabricated flexible hydrogenated amorphous silicon (a-Si:H) solar cell on a glass substrate and transferred it to a PDMS substrate. There was no degradation of the electrical characteristic of the solar cell after the transfer. This approach enables the integration of high-temperature-processed a-Si:H solar cell onto low-temperature tolerant flexible polymer substrate without chemical contamination or damage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b09820DOI Listing

Publication Analysis

Top Keywords

nacl sacrificial
12
sacrificial layer
12
pdms substrate
12
solar cell
12
ultrafast chemically
8
chemically stable
8
stable transfer
8
water-soluble nacl
8
transfer method
8
substrate transferred
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!