Identifying interactions among drug compounds and target proteins is the basis of drug research and plays a crucial role in drug discovery. However, determining drug-target interactions (DTIs) and potential protein-compound interactions by biological experiment-based method alone is a very complicated, expensive, and time-consuming process. Hence, there is an intense motivation to design in silico prediction methods to overcome these obstacles. In this work, we designed a novel in silico strategy to predict proteome-scale DTIs based on the assumption that DTI pairs can be expressed through the evolutionary information derived from frequency profiles and drugs' structural properties. To achieve this, drug molecules are encoded into the substructure fingerprints to represent certain fragments; target proteins are first converted into position-specific scoring matrix (PSSM) and then encoded as 2-dimensional principal component analysis (2DPCA) descriptors. In the prediction phase, the feature weighted rotation forest (RF) classifier is used to estimate whether drug and target interact with each other on four benchmark datasets, including Enzymes, Ion Channels, GPCRs, and Nuclear Receptors. The prediction accuracy of cross-validation on the four datasets is 95.40%, 88.82%, 85.67%, and 82.22%, respectively. In order to have a clearer assessment of the proposed approach, we compared it with the discrete cosine transform (DCT) descriptor model, support vector machine (SVM) classifier model, and existing excellent approaches, including DBSI, NetCBP, KBMF2K, SIMCOMP, and RFDT. The excellent results of the experiment indicated that the proposed approach can effectively improve the DTI prediction accuracy and can be used as a practical tool for the research and design of new drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13599DOI Listing

Publication Analysis

Top Keywords

frequency profiles
8
target proteins
8
prediction accuracy
8
proposed approach
8
drug
5
identification potential
4
potential drug-targets
4
drug-targets combining
4
combining evolutionary
4
evolutionary extracted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!