Intercalation of atomic species through epitaxial graphene on silicon carbide began only a few years following its initial report in 2004. The impact of intercalation on the electronic properties of the graphene is well known; however, the intercalant itself can also exhibit intriguing properties not found in nature. This realization has inspired new interest in epitaxial graphene/silicon carbide (EG/SiC) intercalation, where the scope of the technique extends beyond modulation of graphene properties to the creation of new 2D forms of 3D materials. The mission of this minireview is to provide a concise introduction to EG/SiC intercalation and to demonstrate a simplified approach to EG/SiC intercalation. We summarize the primary techniques used to achieve and characterize EG/SiC intercalation, and show that thermal evaporation-based methods can effectively substitute for more complex synthesis techniques, enabling large-scale intercalation of non-refractory metals and compounds including two-dimensional silver (2D-Ag) and gallium nitride (2D-GaN).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr03721g | DOI Listing |
Nanoscale
September 2019
Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA and 2-Dimensional Crystal Consortium Materials Innovation Platform, Pennsylvania State University, University Park, PA 16802, USA and Center for Atomically-Thin Multifunctional Coatings, Pennsylvania State University, University Park, PA 16802, USA.
Intercalation of atomic species through epitaxial graphene on silicon carbide began only a few years following its initial report in 2004. The impact of intercalation on the electronic properties of the graphene is well known; however, the intercalant itself can also exhibit intriguing properties not found in nature. This realization has inspired new interest in epitaxial graphene/silicon carbide (EG/SiC) intercalation, where the scope of the technique extends beyond modulation of graphene properties to the creation of new 2D forms of 3D materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!