Injuries to the skin are common in daily life, and a certain type or size of defect is not easily restored using conventional dressings or naturally. The repair of these defects requires restoration of function in regenerated tissues. In this study, a tissue engineered skin was designed and fabricated using a bio-3D printing system. Polycaprolactone and bacterial cellulose comprised the scaffold, due to their excellent biocompatibility and multifunctionality. Adipose-derived mesenchymal stem cells (Ad-MSCs) were seeded onto the scaffold to functionalize it as an artificial skin. The finished artificial skin had mechanical properties similar to that of natural skin, and its fibrous structure providing a unique micro-environment that could regulate the paracrine function of the Ad-MSCs. This effect could be greatly increased by changes in the characteristics of the biomaterials. The artificial skin exhibited high biological activity, strong induction of cell recruitment, migration, growth and up-regulation of gene expression of relevant factors, resulting in excellent wound healing characteristics. This study clarified novel design aspects of cell-material interactions in which the topographical characteristics of materials can be further developed to establish cell signaling or communication networks that take advantage of the paracrine actions of Ad-MSCs to promote specific tissue regeneration or repair characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9bm00939fDOI Listing

Publication Analysis

Top Keywords

artificial skin
12
paracrine function
8
function ad-mscs
8
skin
7
topography fibrous
4
fibrous scaffolds
4
scaffolds modulates
4
modulates paracrine
4
ad-mscs
4
ad-mscs regeneration
4

Similar Publications

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

Purpose Of Review: Squamous cell carcinoma (SCC) is the second most common skin cancer, with an increasing incidence. This review highlights this past year's advances regarding the understanding of its pathogenesis, newly introduced diagnostic methods and updates in prevention and treatment.

Recent Findings: While the pathogenesis of SCC progression remains unclear, new sequencing techniques are helping to better characterize these tumours at the molecular level.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Aim: The study aimed to determine the incidence of adverse drug reactions (ADRs) among newly diagnosed tuberculosis (TB) patients receiving daily drug regimen with fixed-dose combination treatment under the National Tuberculosis Elimination Program.

Materials And Methods: A community-based prospective cohort study was carried out in the Udupi district. Over 12 months, all newly diagnosed TB patients of either gender were included from 63 primary health centers and 6 community health centers, and ADRs were recorded by personal interviews.

View Article and Find Full Text PDF

Pocket hematoma is a common and serious complication following cardiac implantable electronic device (CIED) implantation, contributing to significant morbidity and mortality. This study aimed to evaluate the efficacy of a novel pocket compression device in reducing pocket hematoma occurrence. We enrolled 242 patients undergoing CIED implantation, randomly assigning them to receive either the novel compression vest with a pressure cuff or conventional sandbag compression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!