Background: Maternal natural killer cells (NK cells) are a prevailing leukocyte population in the uteroplacental bed. Current descriptions of the effect of cytokines from the placental microenvironment on the expression of receptors by trophoblast and NK cells are inadequate and contradictory. There is insufficient information about the ability of NK cells to migrate through trophoblast cells.

Objective: To assess the impact of conditioned media obtained during culturing of placentas from the first and the third trimesters of healthy pregnancies on the phenotype of trophoblast and NK cells and impact on adhesion and transmigration of NK cells through trophoblast cell layer.

Results: We established that conditioned media obtained from both first and third trimester placentas increased the intensity of CD106, CD49e, CD49a, CD31, CD51/61, and integrin β6 expression by trophoblast cells. Conditioned media obtained from first trimester placentas increased the intensity of CD11a, CD29, CD49d, CD58, CD29 expression by NK cells. The presence of conditioned media from third trimester placentas resulted in more intense CD29, CD49d, CD11a, CD29, CD49d, and CD58 expression by NK cells. Migration of NK cells through trophoblast cells in the presence of conditioned media from first trimester placentas was increased compared with the migration level in the presence of conditioned media from third trimester placentas. This may be associated with increased expression of CD18 by NK cells.

Conclusion: First trimester placental secretory products increase adhesion receptor expression by both trophoblast and NK cells. Under these conditions, trophoblast is capable of ensuring NK cell adhesion and transmigration.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1566524019666190808103227DOI Listing

Publication Analysis

Top Keywords

trophoblast cells
24
conditioned media
24
trimester placentas
20
cells
13
media third
12
third trimester
12
placentas increased
12
cd29 cd49d
12
presence conditioned
12
trophoblast
9

Similar Publications

Proteomic Approach Using DIA-MS Identifies Morphogenesis-Associated Proteins during Cardiac Differentiation of Human iPS Cells.

ACS Omega

January 2025

Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have potential applications in regenerative medicine. The quality by design (QbD) approach enables the efficiency and quality assurance in the manufacturing of hiPSC-derived products. It requires a molecular understanding of hiPSC differentiation throughout the differentiation process; however, information on cardiac differentiation remains limited.

View Article and Find Full Text PDF

Myeloperoxidase-mediated immature dendritic cell promotes vascular remodeling and functional placenta formation.

Placenta

January 2025

Department of Reproductive Medicine Centre, The first Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China. Electronic address:

Introduction: The distribution of myeloperoxidase (MPO) and dendritic cells (DCs) in sponge trophoblast cells may contribute to the syncytialisation of trophoblast cells and the establishment of uterine placental circulation. Our previous series of studies have shown that MPO plays an important role in angiogenesis and repair, and placental vascular dysfunction can lead to serious pregnancy complications and even miscarriage.

Methods: Mouse model of MPO knockout was constructed, and the crosstalk between MPO and dendritic cells (DC) cells was investigated to determine whether MPO is involved in the pregnancy process.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Mechanisms controlling the process and patterning of blood vessel development in the placenta remain largely unknown. The close physical proximity of early blood vessels observed in the placenta and the cytotrophoblast, as well as the reported production of vasculogenic growth factors by the latter, suggests that signalling between these two niches may be important. Here, we have developed an in vitro model to address the hypothesis that the cytotrophoblast, by the secretion of soluble factors, drives differentiation of resident sub-trophoblastic mesenchymal stem cells (MSCs) along a vascular lineage, thereby establishing feto-placental circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!