Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MXenes are a new rapidly developing class of two-dimensional materials with suitable properties for a broad range of applications. It has been shown that during synthesis of these materials the surfaces are usually functionalized by O, OH, and F and further suggested that controlling the surface allows controlling the material properties. However, a proper understanding of the surface structure is still missing, with a significant discrepancy between computational and experimental studies. Experiments consistently show formation of surfaces with mixed terminations, whereas computational studies point toward pure terminated surfaces. Here, we explain the formation of mixed functionalization on the surface of titanium-based two-dimensional carbides, TiC and TiC, using a multiscale modeling scheme. Our scheme is based on calculating Gibbs free energy of formation by a combination of electronic structure calculations with cluster expansion and Monte Carlo simulations. Our calculations show formation of mixtures of O, OH, and F on the surface with the composition depending on pH, temperature, and the work function. On the other hand, our results also suggest a limited stable range of compositions, which challenges the paradigm of a high tunability of MXene properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748675 | PMC |
http://dx.doi.org/10.1021/acsnano.9b03511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!