Computational modelling of magnesium stent mechanical performance in a remodelling artery: Effects of multiple remodelling stimuli.

Int J Numer Method Biomed Eng

Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.

Published: October 2019

Significant research has been conducted in the area of coronary stents/scaffolds made from resorbable metallic and polymeric biomaterials. These next-generation bioabsorbable stents have the potential to completely revolutionise the treatment of coronary artery disease. The primary advantage of resorbable devices over permanent stents is their temporary presence which, from a theoretical point of view, means only a healed coronary artery will be left behind following degradation of the stent potentially eliminating long-term clinical problems associated with permanent stents. The healing of the artery following coronary stent/scaffold implantation is crucial for the long-term safety of these devices. Computational modelling can be used to evaluate the performance of complex stent devices in silico and assist in the design and development and understanding of the next-generation resorbable stents. What is lacking in computational modelling literature is the representation of the active response of the arterial tissue in the weeks and months following stent implantation, ie, neointimal remodelling, in particular for the case of biodegradable stents. In this paper, a computational modelling framework is developed, which accounts for two major physiological stimuli responsible for neointimal remodelling and combined with a magnesium corrosion model that is capable of simulating localised pitting (realistic) stent corrosion. The framework is used to simulate different neointimal growth patterns and to explore the effects the neointimal remodelling has on the mechanical performance (scaffolding support) of the bioabsorbable magnesium stent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3247DOI Listing

Publication Analysis

Top Keywords

computational modelling
16
neointimal remodelling
12
magnesium stent
8
mechanical performance
8
coronary artery
8
permanent stents
8
stent
6
remodelling
5
stents
5
computational
4

Similar Publications

A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics.

J Phys Chem A

January 2025

Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.

Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.

View Article and Find Full Text PDF

The growing integration of renewable energy sources within microgrids necessitates innovative approaches to optimize energy management. While microgrids offer advantages in energy distribution, reliability, efficiency, and sustainability, the variable nature of renewable energy generation and fluctuating demand pose significant challenges for optimizing energy flow. This research presents a novel application of Reinforcement Learning (RL) algorithms-specifically Q-Learning, SARSA, and Deep Q-Network (DQN)-for optimal energy management in microgrids.

View Article and Find Full Text PDF

Determination of parathyroid function after total thyroidectomy by objective analysis of its fluorescence intensity with indocyanine green using purpose developed computer software.

Curr Probl Surg

January 2025

General and Digestive Surgery Service, Son Espases University Hospital, Palma, Balearic Islands, Spain; Advanced Oncological Surgery, m-HEALTH and Surgical Technological Research Group. Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain; Department of Medicine, University of Balearic Islands (UIB), Palma, Balearic Islands, Spain.

View Article and Find Full Text PDF

Network pharmacology and molecular docking to explore mechanisms of clozapine-induced cardiac arrest.

J Psychiatry Neurosci

January 2025

From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.

Background: Clozapine is superior to all other antipsychotics in treating schizophrenia in terms of its curative efficacy; however, this drug is prescribed only as a last resort in the treatment of schizophrenia, given its potential to induce cardiac arrest. The mechanism of clozapine-induced cardiac arrest remains unclear, so we aimed to elucidate the potential mechanisms of clozapine-induced cardiac arrest using network pharmacology and molecular docking.

Methods: We identified and analyzed the overlap between potential cardiac arrest-related target genes and clozapine target genes.

View Article and Find Full Text PDF

It takes two to tango: The second membrane-binding site in peripheral proteins.

Structure

January 2025

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India. Electronic address:

In this issue of Structure, Soteriou et al. use cell biology, in vitro reconstitution approaches, and molecular dynamics (MD) simulations to characterize the membrane association of AKT1. The authors show that the AKT1 pleckstrin homology domain contains two essential and cooperative PI(3,4,5)P-binding sites that enable stable membrane binding of AKT1 in the requisite orientation required for effective downstream signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!