Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti-tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA-MB 231 and MCF-7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD-induced cell proliferation. Treatment with N-acetyl-cysteine (NAC), an ROS scavenger, blocked CD-induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD-induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c-Jun N-terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase-3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD-induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA-MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD-induced cell cycle arrest and apoptosis in breast cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.11217DOI Listing

Publication Analysis

Top Keywords

arrest apoptosis
24
breast cancer
20
g2/m arrest
16
cancer cells
16
cd-induced cell
12
mda-mb 231
8
blocked cd-induced
8
cd-induced g2/m
8
cell cycle
8
cycle arrest
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!