Purpose: Fluid-attenuated inversion recovery (FLAIR) nulls the CSF signal and is widely used in neuro MRI exams. A 3D scan can provide high SNR, contiguous coverage, and reduced sensitivity to through-plane CSF flow. In this work, a 3D spiral FLAIR technique is proposed to improve the image quality of conventional 3D Cartesian FLAIR.

Methods: The 3D spiral FLAIR sequence incorporated a spiral-in/out readout to preserve higher scan efficiency and eliminate off resonance-induced artifacts observed with a commonly implemented spiral-out readout, a compensation approach to minimize phase errors due to the concomitant fields accompanying the spiral gradient, and an adapted variable flip angle scheme to preserve scan efficiency and maintain a long and stable echo train. 3D Cartesian and spiral FLAIR (~6 min each) were acquired on a 3 Tesla scanner from 6 subjects (age range: 31-64 years; mean: 39.5). Two neuroradiologists rated the images in a blinded fashion on a 5-point scale. The noise performance was assessed quantitatively.

Results: Compared to 3D Cartesian FLAIR, 3D spiral FLAIR exhibits greater reduction of artifacts from CSF, especially anterior to the brain stem (rated better in 4 cases), artifacts attributed to blood/flow in the deep brain (better or much better in all 6 cases), and superior overall image quality (much better in 5 cases) despite residual susceptibility artifacts near the nasal cavity. Quantitative assessment demonstrates ~1.5× higher average SNR than Cartesian data.

Conclusion: 3D spiral FLAIR achieves higher SNR, reduced CSF, and blood/flow artifacts, providing an alternative to 3D Cartesian FLAIR for neurological exams.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.27911DOI Listing

Publication Analysis

Top Keywords

spiral flair
20
image quality
12
better cases
12
flair
9
flair spiral
8
scan efficiency
8
cartesian flair
8
spiral
7
cartesian
5
artifacts
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!