Purpose: A properly characterized macromolecular (MM) contribution is essential for accurate metabolite quantification in FID-MRSI. MM information can be included into the fitting model as a single component or parameterized and included over several individual MM resonances, which adds flexibility when pathologic changes are present but is prone to potential overfitting. This study investigates the effects of different MM models on MRSI reproducibility.

Methods: Clinically feasible, high-resolution FID-MRSI data were collected in ~5 min at 7 Tesla from 10 healthy volunteers and quantified via LCModel (version 6.3) with 3 basis sets, each with a different approach for how the MM signal was handled: averaged measured whole spectrum (full MM), 9 parameterized components (param MM) with soft constraints to avoid overparameterization, or without any MM information included in the fitting prior knowledge. The test-retest reproducibility of MRSI scans was assessed voxel-wise using metabolite coefficients of variation and intraclass correlation coefficients and compared between the basis sets. Correlations of concentration estimates were investigated for the param MM fitting model.

Results: The full MM model provided the most reproducible quantification of total NAA, total Cho, myo-inositol, and glutamate + glutamine ratios to total Cr (coefficients of variations ≤ 8%, intraclass correlation coefficients ≥ 0.76). Using the param MM model resulted in slightly lower reproducibility (up to +3% higher coefficients of variations, up to -0.1 decreased intraclass correlation coefficients). The quantification of the parameterized macromolecules did not affect quantification of the overlapping metabolites.

Conclusion: Clinically feasible FID-MRSI with an experimentally acquired MM spectrum included in prior knowledge provides highly reproducible quantification for the most common neurometabolites in healthy volunteers. Parameterization of the MM spectrum may be preferred as a compromise between quantification accuracy and reproducibility when the MM content is expected to be pathologically altered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851974PMC
http://dx.doi.org/10.1002/mrm.27922DOI Listing

Publication Analysis

Top Keywords

intraclass correlation
12
correlation coefficients
12
included fitting
8
clinically feasible
8
healthy volunteers
8
basis sets
8
prior knowledge
8
reproducible quantification
8
coefficients variations
8
quantification
6

Similar Publications

Purpose: The Trunk Impairment Scale-modified Norwegian version (TIS-modNV) measures trunk control for clinical and research purposes. This study examined the validity and reliability of the TIS-modNV in people with multiple sclerosis (pwMS).

Materials And Methods: Sixty-eight pwMS (mild to moderate) participated.

View Article and Find Full Text PDF

Unlabelled: In recent years, the EnodePro device has been one of the most frequently used velocity sensors to track the bar velocity in resistance training, with the aim of providing load-velocity profiles. However, recent articles highlight a lack of reliability and validity in the estimated maximal strength, which can cause a serious health risk due to the overestimation of the bar velocity. With this study, we aimed to investigate whether imprecision in the measurement could explain the variance in this measurement error.

View Article and Find Full Text PDF

This study aimed to assess the intraday reliability of markerless gait analysis using an RGB-D camera versus a traditional three-dimensional motion analysis (3DMA) system with and without a simulated walking assistant. Gait assessments were conducted on 20 healthy adults walking on a treadmill with a focus on spatiotemporal parameters gathered using the RGB-D camera and 3DMA system. The intraday reliability of the RGB-D camera was evaluated using intraclass correlation coefficients (ICC 1, 1), while its consistency with the 3DMA system was determined using ICC (2, 1).

View Article and Find Full Text PDF

A New Approach to Non-Invasive Microcirculation Monitoring: Quantifying Capillary Refill Time Using Oximetric Pulse Waves.

Sensors (Basel)

January 2025

Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.

(1) Background: To develop a novel capillary refill time measurement system and evaluate its reliability and reproducibility. (2) Methods: Firstly, the utilization of electromagnetic pressure technology facilitates the automatic compression and instantaneous release of the finger. Secondly, the employment of pressure sensing technology and photoelectric volumetric pulse wave analysis technology enables the dynamic monitoring of blood flow in distal tissues.

View Article and Find Full Text PDF

Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with the PhyPhox app, acceleration data was collected and analyzed using a custom algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!