A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving estimation efficiency for regression with MNAR covariates. | LitMetric

Improving estimation efficiency for regression with MNAR covariates.

Biometrics

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada.

Published: March 2020

For regression with covariates missing not at random where the missingness depends on the missing covariate values, complete-case (CC) analysis leads to consistent estimation when the missingness is independent of the response given all covariates, but it may not have the desired level of efficiency. We propose a general empirical likelihood framework to improve estimation efficiency over the CC analysis. We expand on methods in Bartlett et al. (2014, Biostatistics 15, 719-730) and Xie and Zhang (2017, Int J Biostat 13, 1-20) that improve efficiency by modeling the missingness probability conditional on the response and fully observed covariates by allowing the possibility of modeling other data distribution-related quantities. We also give guidelines on what quantities to model and demonstrate that our proposal has the potential to yield smaller biases than existing methods when the missingness probability model is incorrect. Simulation studies are presented, as well as an application to data collected from the US National Health and Nutrition Examination Survey.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.13131DOI Listing

Publication Analysis

Top Keywords

estimation efficiency
8
missingness probability
8
improving estimation
4
efficiency
4
efficiency regression
4
regression mnar
4
covariates
4
mnar covariates
4
covariates regression
4
regression covariates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!