When double-strand breaks are introduced in a genome by CRISPR they are repaired either by non-homologous end joining (NHEJ), which often results in insertions or deletions (indels), or by homology-directed repair (HDR), which allows precise nucleotide substitutions to be introduced if a donor oligonucleotide is provided. Because NHEJ is more efficient than HDR, the frequency with which precise genome editing can be achieved is so low that simultaneous editing of more than one gene has hitherto not been possible. Here, we introduced a mutation in the human PRKDC gene that eliminates the kinase activity of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). This results in an increase in HDR irrespective of cell type and CRISPR enzyme used, sometimes allowing 87% of chromosomes in a population of cells to be precisely edited. It also allows for precise editing of up to four genes simultaneously (8 chromosomes) in the same cell. Transient inhibition of DNA-PKcs by the kinase inhibitor M3814 is similarly able to enhance precise genome editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821318PMC
http://dx.doi.org/10.1093/nar/gkz669DOI Listing

Publication Analysis

Top Keywords

precise editing
8
allows precise
8
precise genome
8
genome editing
8
editing
5
simultaneous precise
4
editing multiple
4
multiple genes
4
genes human
4
human cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!