We report a combined study of imaging the antiferromagnetic (AFM) spin structure and measuring the spin Hall magnetoresistance (SMR) in epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO. X-ray magnetic linear dichroism photoemission electron microscopy measurements reveal that the AFM spins of the SmFeO(1 1 0) align in the plane of the film. Angularly dependent magnetoresistance measurements show that SmFeO/Ta bilayers exhibit a positive SMR, in contrast to the negative SMR expected in previously studied collinear AFMs. The SMR amplitude increases linearly with increasing external magnetic field at higher magnetic fields, suggesting that field-induced canting of the AFM spins plays an important role. In contrast, around the coercive field, no detectable SMR signal is observed, indicating that the SMR of the AFM and canting magnetization components cancel out. Below 50 K, the SMR amplitude increases sizably by a factor of two as compared to room temperature, which likely correlates with the long-range ordering of the Sm ions. Our results show that the SMR is a sensitive technique for non-equilibrium spin systems of non-collinear AFMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab303c | DOI Listing |
J Phys Chem A
January 2025
Department of Physics, University of Northeastern, IMIT-CONICET, Av. Libertad, 5500 Corrientes, Argentina.
In this study, we worked at the CCSD/aug-cc-pVTZ level to obtain the conformers of glycine in its neutral and zwitterionic forms in the gas and water phases. We then computed the NMR properties (spin-spin coupling constants and nuclear magnetic shieldings) at the SOPPA/aug-cc-pVTZ-J level. We attempt to elucidate the apparent discrepancy arising from two previous works by Valverde et al.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia.
The asymmetric Schiff base prepared from ethylenediamine and pyridine-2-carboxaldehyde reacts with Fe(ClO)·6HO to form the Fe(II) complex [FeL](ClO) with L = ,-diethyl-'-(pyridin-2-yl)methylene)ethane-1,2-diamine, where the Fe(III) starting material has been unexpectedly reduced to Fe(II). This complex was characterized by elemental analysis, infrared spectra, single crystal and powder X-ray diffraction measurements, variable temperature DC magnetic measurement and room temperature Mössbauer spectroscopy. The asymmetric ligand L coordinates in a tridentate fashion through its pyridyl, azomethine and amino nitrogen atoms, generating a distorted octahedral geometry around the central metal ion.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States.
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!