Background: NYX-2925 is a novel N-methyl-D-aspartate receptor (NMDAR) modulator that has been shown to facilitate both NMDAR-dependent long-term potentiation (LTP) in vitro and learning and memory in vivo.

Objective: The present studies examine the effects of NYX-2925 on NMDAR-dependent auditory LTP (aLTP) in vivo.

Methods: NMDAR-dependent aLTP and NMDAR-dependent auditory mismatch negativity (MMN) was measured, as well as changes in resting-state qEEG power.

Results: NYX-2925 (1, 10 mg/kg PO) increased aLTP 1 h after auditory tetanus measured by the post- minus pre-tetanus difference waveform 140-180 ms post tone onset. NYX-2925 (0.1, 1 mg/kg PO) facilitated MMN measured by the difference waveform (i.e., deviant minus standard tones). NYX-2925 (0.1, 1, 10 mg/kg PO) also enhanced resting-state alpha qEEG power. Conversely, the NMDAR glutamate site antagonist CPP (10 mg/kg IP) reduces alpha power and MMN and produces an opposite effect as NYX-2925 on aLTP.

Conclusions: Together, these data suggest that the activation of the NMDAR by NYX-2925 enhances synaptic plasticity in vivo, which may both reduce symptoms of neurological disorders and serve as a biomarker for drug effects. This is the first demonstration of a long-lasting (1-h post-tetanus) effect of NMDAR modulation on synaptic plasticity processes in vivo using a noninvasive technique in freely behaving animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892763PMC
http://dx.doi.org/10.1007/s00213-019-05341-wDOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
nmdar-dependent auditory
8
mmn measured
8
nyx-2925 10 mg/kg
8
difference waveform
8
nyx-2925
7
nmdar-dependent
5
translational eeg-based
4
eeg-based approach
4
approach assess
4

Similar Publications

The release of synaptic vesicles (SVs) at the synaptic junction is a complex process involving various specialized proteins that work in unison. Among these, Bassoon has emerged as a significant protein, particularly noted for its association with various neurological and aging-related diseases. Due to its structural and functional roles, Bassoon has become a focus of recent research, especially in understanding its implications in neurodegenerative and psychiatric disorders.

View Article and Find Full Text PDF

Unveiling the hemispheric specialization of language: Organization and neuroplasticity.

Handb Clin Neurol

March 2025

Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, Grenoble, France. Electronic address:

The advancements in understanding hemispheric specialization of language (HSL) have been following two primary avenues: the development of neuroimaging techniques and the study of its reorganizations in patients with various neuropathologic conditions. Hence, the objectives of this chapter are twofold. First, to provide an overview of the key neuroimaging techniques employed to investigate HSL, along with the notable findings derived from them in the healthy population.

View Article and Find Full Text PDF

Multi-region processing during sleep for memory and cognition.

Proc Jpn Acad Ser B Phys Biol Sci

March 2025

Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.

Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels.

View Article and Find Full Text PDF

PICK1 links KIBRA and AMPA receptor subunit GluA2 in coiled-coil-driven supramolecular complexes.

J Biol Chem

March 2025

Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute Investigator, UT Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:

The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2.

View Article and Find Full Text PDF

Influence of Ibuprofen on glycerophospholipids and sphingolipids in context of Alzheimer´s Disease.

Biomed Pharmacother

March 2025

Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany. Electronic address:

Alzheimer's disease (AD) is a multifactorial disorder associated with neuroinflammation, elevated oxidative stress, lipid alterations as well as amyloid-deposits and the formation of neurofibrillary tangles. Ibuprofen, a globally used analgesic, is discussed to influence disease progression due to its anti-inflammatory effect. However, changes in lipid-homeostasis induced by Ibuprofen have not yet been analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!