The mol-ecule of the title Schiff base compound, CHNO·HO, displays a configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter-molecular N-H⋯O, C-H⋯O, O-H⋯O and O-H⋯N hydrogen-bonding inter-actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter-actions. The title compound has also been characterized by frontier mol-ecular orbital analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658940PMC
http://dx.doi.org/10.1107/S2056989019006492DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
hirshfeld surface
8
surface analysis
8
structure hirshfeld
4
analysis
4
analysis homo-lumo
4
homo-lumo analysis
4
analysis -'-3-hy-droxy-4-meth-oxy-benzyl-idenenicotinohydrazide
4
-'-3-hy-droxy-4-meth-oxy-benzyl-idenenicotinohydrazide monohydrate
4
monohydrate mol-ecule
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The spatiotemporal pattern of the spread of pathologically modified tau through brain regions in Alzheimer's disease (AD) can be explained by prion-like cell-to-cell seeding and propagation of misfolded tau aggregates. Hence, to develop targeted therapeutic antibodies, it is important to identify the seeding- and propagation-competent tau species. The hexapeptide VQIINK of tau is a critical region for tau aggregation, and K280 is acetylated in various tauopathies including AD.

View Article and Find Full Text PDF

Background: The increased incidence of Alzheimer's disease (AD) rate represent an unmet medical need and thus critical for the development of novel molecular therapeutics. Recent work focusing on patients with apoE4 alleles has highlighted the association of brain cholesterol dysregulation with elevated pathological burden and neurodegeneration. These studies have highlighted the importance of the nuclear receptor Liver X receptor (LXR) for developing AD therapies.

View Article and Find Full Text PDF

Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

View Article and Find Full Text PDF

Hexaanionic cyclophosphazenate ligands [(RN)PN] provide versatile platforms for the assembly of multinuclear metal arrays due to their multiple coordination sites and highly flexible ligand core structure. This work investigates the impact of incrementally increasing the steric demand of the ligand periphery on the coordination behavior of ethylzinc arrays. It shows that the increased congestion around the ligand sites is alleviated by progressive condensation with the elimination of diethylzinc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!