We present a comprehensive investigation of the magnetic and optical properties of an ytterbium complex, which combines two desirable and practical features into a single molecular system. Based upon Yb ions that promote near-infrared optical activity and a chemical backbone that is ideal for an in-depth understanding of the magnetic behaviour, we have designed a multifunctional opto-magnetic species that operates as a luminescent thermometer and as a single-molecule magnet (SMM). Our magnetic investigations, in conjunction with calculations, reveal one of the highest energy barriers reported for an Yb-based complex. Moreover, we correlate this anisotropic barrier with the emission spectrum of the compound, wherein we provide a complete assignment of the energetic profile of the complex. Such studies lay the foundation for the design of exciting multi-faceted materials that are able to retain information at the single-molecule level and possess built-in thermal self-monitoring capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657417PMC
http://dx.doi.org/10.1039/c9sc00343fDOI Listing

Publication Analysis

Top Keywords

ytterbium complex
8
exploring dual
4
dual functionality
4
functionality ytterbium
4
complex
4
complex luminescence
4
luminescence thermometry
4
thermometry slow
4
magnetic
4
slow magnetic
4

Similar Publications

Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study.

ACS Catal

October 2024

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

A class of generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.

View Article and Find Full Text PDF

Toward High-Performance Pure-Green Tandem Organic Light-Emitting Diodes by Employing Barrier-Free Strategies in the Charge Generation Layer.

ACS Appl Mater Interfaces

January 2025

Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China.

Charge generation layers (CGLs) play crucial roles in determining the electroluminescence (EL) performance of tandem organic light-emitting diodes (OLEDs). However, acquiring negligible voltage drops across the CGL unit and high-efficiency multiplications remains challenging. Here, we propose barrier-free strategies to compose a high-performance p-i-n type CGL intermediate by introducing a Yb/HI-9 modification at the heterojunction and a novel n-dopant, Yb:1,3-bis(9-phenyl-1,10-phenanthrolin-2-yl)benzene (mdPPhen), as the n-CGL.

View Article and Find Full Text PDF

Ytterbium Doping-Retooled Prussian Blue for Tumor Metabolism Interference Therapy.

ACS Nano

December 2024

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Drug repurposing refers to excavating clinically approved drugs for new clinical indications, effectively shortening the cost and time of clinical evaluation due to the established molecular structure, pharmacokinetics, and pharmacodynamics. In this sense, clinically approved Prussian blue (PB) has received considerable attention, by virtue of its unique optical, magnetic, and enzymatic performance. Nevertheless, the clinical transformation of PB-based nanodrugs remains restricted owing to their complex synthetic formulation and constrained therapeutic performance.

View Article and Find Full Text PDF

Multielectron Redox Chemistry of Ytterbium Complexes Reaching the +1 and Zero Formal Oxidation States.

J Am Chem Soc

January 2025

Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Lanthanide redox reactivity remains limited to one-electron transfer reactions due to their inability to access a broad range of oxidation states. Here, we show that multielectron reductive chemistry is achieved for ytterbium by using the tripodal tris(siloxide)arene redox-active ligand, which can store two electrons in the arene anchor. Reduction of the Yb(III) complex of the tris(siloxide)arene tripodal ligand affords the Yb(II) analogue by metal-centered reduction.

View Article and Find Full Text PDF

Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!