Background: Dietary supplements (DSs) are widely used. However, consumers know little about the safety and efficacy of DSs. There is a growing interest in accessing health information online; however, health information, especially online information on DSs, is scattered with varying levels of quality. In our previous work, we prototyped a web application, ALOHA, with interactive graph-based visualization to facilitate consumers' browsing of the integrated DIetary Supplement Knowledge base (iDISK) curated from scientific resources, following an iterative user-centered design (UCD) process.
Methods: Following UCD principles, we carried out two design iterations to enrich the functionalities of ALOHA and enhance its usability. For each iteration, we conducted a usability assessment and design session with a focus group of 8-10 participants and evaluated the usability with a modified System Usability Scale (SUS). Through thematic analysis, we summarized the identified usability issues and conducted a heuristic evaluation to map them to the Gerhardt-Powals' cognitive engineering principles. We derived suggested improvements from each of the usability assessment session and enhanced ALOHA accordingly in the next design iteration.
Results: The SUS score in the second design iteration decreased to 52.2 ± 11.0 from 63.75 ± 7.2 in our original work, possibly due to the high number of new functionalities we introduced. By refining existing functionalities to make the user interface simpler, the SUS score increased to 64.4 ± 7.2 in the third design iteration. All participants agreed that such an application is urgently needed to address the gaps in how DS information is currently organized and consumed online. Moreover, most participants thought that the graph-based visualization in ALOHA is a creative and visually appealing format to obtain health information.
Conclusions: In this study, we improved a novel interactive visualization platform, ALOHA, for the general public to obtain DS-related information through two UCD design iterations. The lessons learned from the two design iterations could serve as a guide to further enhance ALOHA and the development of other knowledge graph-based applications. Our study also showed that graph-based interactive visualization is a novel and acceptable approach to end-users who are interested in seeking online health information of various domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686235 | PMC |
http://dx.doi.org/10.1186/s12911-019-0857-1 | DOI Listing |
With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG).
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, Changjiang West Road, Hefei, 230036, Anhui, China.
Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
The Institute of Cancer Research, London, United Kingdom.
Background: Deep learning (DL) has set new standards in cancer diagnosis, significantly enhancing the accuracy of automated classification of whole slide images (WSIs) derived from biopsied tissue samples. To enable DL models to process these large images, WSIs are typically divided into thousands of smaller tiles, each containing 10-50 cells. Multiple Instance Learning (MIL) is a commonly used approach, where WSIs are treated as bags comprising numerous tiles (instances) and only bag-level labels are provided during training.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Deception detection is a critical aspect across various domains. Integrating advanced signal processing techniques, particularly in neuroscientific studies, has opened new avenues for exploring deception at a deeper level. This study uses electroencephalogram (EEG) signals from a balanced cohort of 22 participants, consisting of both males and females, aged between 22 and 29, engaged in a visual task for instructed deception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!