Although sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are promising prospects for next-generation energy storage devices, their low capacities and inferior kinetics hinder their further application. Among various phosphate-based polyanion materials, titanium pyrophosphate (TiPO) possesses outstanding ion transferability and electrochemical stability. However, it has rarely been adopted as an anode for SIBs/PIBs due to its poor electronic conductivity and nonreversible phase transitions. Herein, an ultrastable TiPO with enriched oxygen vacancies is prepared as a SIB/PIB anode through P-containing polymer mediation carbonization, which avoids harsh reduction atmospheres or expensive facilities. The introduction of oxygen vacancies effectively increases the pseudocapacitance and diffusivity coefficient and lowers the Na insertion energy barrier. As a result, the TiPO anode with enriched oxygen vacancies exhibits ultrastable Na/K ion storage and superior rate capability. The synthetic protocol proposed here may offer a simple pathway to explore advanced oxygen vacancy-type anode materials for SIBs/PIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b03686 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.
CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing WUT Nano Key Lab, Wuhan, Hubei, 430070, China.
The irreversible lattice oxygen release is the primary issue in layered oxide cathodes which is generally attributed to a consecutive phase transition with less lattice oxygen content. Herein, an anomalous metal segregation pathway is observed in oxygen vacancy defective layered cathodes, which happens far before the onset of phase transitions. The correlation of electron energy loss spectroscopy indicates that an early charge transfer from oxygen 2p to Mn 3d orbital is responsible.
View Article and Find Full Text PDFSmall
January 2025
Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, P. R. China.
Oxygen vacancy (OV) defect engineering plays a crucial role in enhancing photocatalytic efficiency. However, the direct visual characterization of oxygen vacancies still remains technically limited. Herein, a bismuth titanate (BiTiO, BTO-OV) model photocatalyst containing oxygen vacancies is constructed through density functional theory (DFT) calculations to reveal the influence mechanism of distinctive periodic quantum well and oxygen vacancies on the charge transfer behavior in BTO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, College of Materials Science and Engineering, South Lushan Road 2#, 410082, China, 410082, Changsha, CHINA.
Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:
Nitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!