Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome.

N Engl J Med

From the Department of Medicine, University of California San Diego, La Jolla (J.L.W., S.T.), and Ionis Pharmaceuticals, Carlsbad (V.J.A., Q.Y., S.G.H., R.S.G., S.T.) - both in California; the Department of Medicine, Université de Montréal and ECOGENE 21, Chicoutimi, QC (D.G.), and the Department of Medicine and Laboratory Medicine, Centre Hospitalier Universitaire de Québec-University Laval, Quebec, QC (J.B.) - both in Canada; the Department of Medicine, Beth Israel Deaconess Medical Center (S.D.F.), and the Department of Medicine, Massachusetts General Hospital (L.H.), Boston, and Akcea Therapeutics, Cambridge (A.D., K.R.W., L.O.) - all in Massachusetts; Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome (M.A.); Academic Medical Center, Department of Vascular Medicine, Amsterdam (E.S.G.S.); the Department of Medicine, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); the Department of Internal Medicine, Hospital Universitario Miguel Servet, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain (F.C.); the Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa (D.J.B.); and the Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Institut de Création et d'Animation Numériques, Paris (E.B.).

Published: August 2019

Background: Familial chylomicronemia syndrome is a rare genetic disorder that is caused by loss of lipoprotein lipase activity and characterized by chylomicronemia and recurrent episodes of pancreatitis. There are no effective therapies. In an open-label study of three patients with this syndrome, antisense-mediated inhibition of hepatic mRNA with volanesorsen led to decreased plasma apolipoprotein C-III and triglyceride levels.

Methods: We conducted a phase 3, double-blind, randomized 52-week trial to evaluate the safety and effectiveness of volanesorsen in 66 patients with familial chylomicronemia syndrome. Patients were randomly assigned, in a 1:1 ratio, to receive volanesorsen or placebo. The primary end point was the percentage change in fasting triglyceride levels from baseline to 3 months.

Results: Patients receiving volanesorsen had a decrease in mean plasma apolipoprotein C-III levels from baseline of 25.7 mg per deciliter, corresponding to an 84% decrease at 3 months, whereas patients receiving placebo had an increase in mean plasma apolipoprotein C-III levels from baseline of 1.9 mg per deciliter, corresponding to a 6.1% increase (P<0.001). Patients receiving volanesorsen had a 77% decrease in mean triglyceride levels, corresponding to a mean decrease of 1712 mg per deciliter (19.3 mmol per liter) (95% confidence interval [CI], 1330 to 2094 mg per deciliter [15.0 to 23.6 mmol per liter]), whereas patients receiving placebo had an 18% increase in mean triglyceride levels, corresponding to an increase of 92.0 mg per deciliter (1.0 mmol per liter) (95% CI, -301.0 to 486 mg per deciliter [-3.4 to 5.5 mmol per liter]) (P<0.001). At 3 months, 77% of the patients in the volanesorsen group, as compared with 10% of patients in the placebo group, had triglyceride levels of less than 750 mg per deciliter (8.5 mmol per liter). A total of 20 of 33 patients who received volanesorsen had injection-site reactions, whereas none of the patients who received placebo had such reactions. No patients in the placebo group had platelet counts below 100,000 per microliter, whereas 15 of 33 patients in the volanesorsen group had such levels, including 2 who had levels below 25,000 per microliter. No patient had platelet counts below 50,000 per microliter after enhanced platelet-monitoring began.

Conclusions: Volanesorsen lowered triglyceride levels to less than 750 mg per deciliter in 77% of patients with familial chylomicronemia syndrome. Thrombocytopenia and injection-site reactions were common adverse events. (Funded by Ionis Pharmaceuticals and Akcea Therapeutics; APPROACH Clinical Trials.gov number, NCT02211209.).

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1715944DOI Listing

Publication Analysis

Top Keywords

familial chylomicronemia
12
chylomicronemia syndrome
12
plasma apolipoprotein
12
apolipoprotein c-iii
12
levels baseline
12
patients receiving
8
c-iii levels
8
deciliter corresponding
8
volanesorsen
5
patients
5

Similar Publications

DNA methylation levels may contribute to severe hypertriglyceridemia in multifactorial chylomicronemia syndrome.

Clin Biochem

January 2025

Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montréal, Québec, Canada. Electronic address:

Background And Aims: Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the two main causes of severe hypertriglyceridemia (sHTG). FCS is a rare autosomal recessive form of sHTG, whereas MCS is mainly polygenic in nature with both common and rare variants accumulating and leading to sHTG. However, 30 to 50% of MCS patients have no identified genetic cause of sHTG.

View Article and Find Full Text PDF

Dyslipidemia in Infants: Challenges in Diagnosis and Management.

Tunis Med

December 2024

University El Manar, Faculty of Medecine of Tunis. Pediatrics and Neonatology departement, Yasminette Ben Arous, Tunisia.

Dyslipidemia in infants is a rare condition characterized by abnormal levels of lipids in the blood, such as cholesterol and triglycerides. Early diagnosis poses a challenge due to nonspecific symptoms and lipid criteria differing from adults. Through two clinical cases of familial dyslipidemia (Type 1 Familial Hypercholesterolemia and Type 2b Combined Familial Hyperlipidemia), we highlight the diagnostic and therapeutic challenges encountered in infants, emphasizing the importance of a multidisciplinary approach in care and early screening.

View Article and Find Full Text PDF

Unmasking a Rare Genetic Mutation: The Importance of Genetic Testing in Refractory Hypertriglyceridemia.

AACE Clin Case Rep

August 2024

Department of Endocrinology, Endocrine Associates of West Village, New York City, New York.

Background/objective: Genetic causes of hypertriglyceridemia like familial chylomicronemia syndrome can be overlooked in everyday practice. We report a patient with a rare genetic mutation, highlighting the importance of genetic testing for timely diagnosis and prevention of complications.

Case Report: A 45-year-old Hispanic female presented with serum triglyceride levels of 749 mg/dL, refractory to rosuvastatin 10 mg daily and omega-3 ethyl esters 2 g daily.

View Article and Find Full Text PDF

Background: Familial chylomicronemia syndrome (FCS) is a rare genetic disorder with heterogeneous presentation, where acute encephalopathy is rarely described in literature. Therefore, initial neurologic symptoms could make the diagnosis and treatment challenging.

Case Presentation: A four-month-old male infant presented with acute encephalopathy, vomiting, bulging fontanel, decreased appetite and failure to thrive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!