The second-order nonlinear optical properties of Lindqvist-type organoimido polyoxometalates bearing donor and acceptor substituents are evaluated by employing density functional theory and time-dependent density functional theory using the ωB97X-D range-separated hybrid exchange-correlation functional to describe accurately the field-induced effects. The hyper-Rayleigh scattering responses, β (-2ω; ω, ω), and the depolarization ratio are the targeted quantities. They are analyzed by resorting to the two-state model, which reduces the full summation-over-state expression to a single diagonal term and relates the response to a few spectroscopic quantities. The validity of this model is demonstrated by its ability to reproduce the β variations as a function of the nature of the ligand, owing to the dominant 1D character of these organic-inorganic hybrids. The calculated values are in good agreement with the recent experimental work of Al-Yasari et al. ( , , 10181-10194), which demonstrates that the hexamolybdate moiety plays the role of an electron acceptor group. On the contrary, they contradict previous studies, which attributed an electron donor character to the polyoxometalate moiety. Calculations highlight that (i) combining the hexamolybdate unit with an organic ligand bearing a strong donor substituent leads to an enhanced first hyperpolarizability, associated with a dominant low-energy excited state, characterized by a large excitation-induced electron transfer from the donating ligand to the hexamolybdate, therefore coupling the polyoxometalate (POM) and its substituted ligand; (ii) in the case of weaker donor substituents, the hexamolybdate still behaves as an electron acceptor, but the first hyperpolarizability is smaller and the coupling has a reduced spatial extension; and, on the contrary, (iii) in the presence of an acceptor substituent, there is a competition between the hexamolybdate and this group so that the first hyperpolarizability becomes very small. The whole set of results demonstrates that polyoxometalate moieties are good candidates to achieve large second-order nonlinear optical (NLO) responses while keeping a rather large transparency window and also that there remains space to improve their integration into NLO efficient organic-inorganic hybrids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b01857 | DOI Listing |
Chemistry
December 2024
University of Pardubice: Univerzita Pardubice, Institute of Organic Chemistry and Technology, CZECHIA.
Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nankai University, School of Materials Science and Engineering, CHINA.
Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Center for Research, SRM Institute of Science and Technology-Ramapuram, Chennai, India.
In this study, we investigate the impact of first and second-order coupling strengths on the stability of a synchronization manifold in a Discrete FitzHugh-Nagumo (DFHN) neuron model with memristor coupling. Master Stability Function (MSF) is used to estimate the stability of the synchronized manifold. The MSF of the DFHN model exhibits two zero crossings as we vary the coupling strengths, which is categorized as class .
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China.
Linear optical diffraction of light is a basic natural phenomenon subject to a long history study and it obeys the well-known reciprocity in transport. In this work we report observation of synergistic nonreciprocal linear and nonlinear diffraction of a Ti:sapphire femtosecond laser beam against a periodic poled lithium niobate (PPLN) thin plate nonlinear grating with a front surface corrugated with a shallow grating of a depth only 67 nm and a smooth back surface. A high peak power pump laser beam shining upon the geometrically asymmetric nonlinear grating from either the front surface and back surface will both cause significant second-order nonlinear (2nd-NL) Raman-Nath diffraction and Cerenkov radiation, in addition to apparent linear optical diffraction and modest third-order nonlinear (3rd-NL) spectral broadening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!