Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is growing interest in estimating quantum observables while circumventing expensive computational overhead for facile in silico materials screening. Machine learning (ML) methods are implemented to perform such calculations in shorter times. Here, we introduce a multistep method based on machine learning algorithms to estimate total energy on the basis of spatial coordinates and charges for various chemical structures, including organic molecules, inorganic molecules, and ions. This method quickly calculates total energy with 0.76 au in root-mean-square error (RMSE) and 1.5% in mean absolute percent error (MAPE) when tested on a database of optimized and unoptimized structures. Using similar molecular representations, experimental thermochemical properties were estimated, with MAPE as low as 6% and RMSE of 8 cal/mol·K for heat capacity in a 10-fold cross-validation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acscombsci.9b00028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!