Purpose Of Review: The potential to regenerate ischemically damaged kidneys while being perfused ex-vivo offers the best near-term solution to increasing kidney allografts for transplantation.

Recent Findings: There are a number of stem-cell sources including: stromal mesenchymal cells (MSC), induced adult pluripotent stem cells, fetal stem cells from placenta, membranes, amniotic fluid and umbilical cord and hematopoietic cells. MSC are increasingly the stem cell of choice and studies are primarily focused on novel induction immunosuppression to prevent rejection. Stem-cell therapies applied in vivo may be of limited benefit because the nonintegrating cells do not remain in the kidney and are not detectable in the body after several days. MSC therapies for transplantation have demonstrated early safety and feasibility. However, efficacy has not been clearly established. A more feasible application of a stem-cell therapy in transplantation is the administration of MSC to treat damaged renal allografts directly while being perfused ex vivo. Initial feasibility has been established demonstrating MSC-treatment results in statistically significant reduction of inflammatory responses, increased ATP and growth factor synthesis and mitosis.

Summary: The ability to regenerate renal tissue ex-vivo sufficiently to result in immediate function could revolutionize transplantation by solving the chronic organ shortage.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOT.0000000000000686DOI Listing

Publication Analysis

Top Keywords

cells msc
8
stem cells
8
cells
5
will cell
4
cell therapies
4
therapies provide
4
provide solution
4
solution shortage
4
shortage transplantable
4
transplantable organs?
4

Similar Publications

Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.

Stem Cells Transl Med

December 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.

View Article and Find Full Text PDF

Bone consists of a complex mineralised matrix that is maintained by a controlled equilibrium of synthesis and resorption by different cell types. Hyaluronan (HA) is an important glycosaminoglycan in many tissues including bone. Previously, the importance of HA synthesis for bone development during embryogenesis has been shown.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a medical condition that affects the lungs and causes scarring due to the deposition of excess fibrotic tissue. This is often preceded by various causes and can lead to long-term health consequences. The treatment of PF using mesenchymal stem cells (MSCs) to correct lung damage and decrease inflammation is a current focus of research.

View Article and Find Full Text PDF

Comparative breakthrough: Umbilical cord mesenchymal stem cells bone marrow mesenchymal stem cells in heart failure treatment.

World J Cardiol

December 2024

Department of Geriatics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.

In this article, we evaluate the comparative efficacy and safety of mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) in the treatment of heart failure and myocardial infarction. MSCs have gained importance as living bio drug due to their regenerative potential, with BM-MSCs being the most extensively studied. However, UC-MSCs offer unique advantages, such as noninvasive collection and fewer ethical concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!