Strained epitaxial interfaces of metal (Pd, Pt, Au) overlayers on nonpolar CdS ([Formula: see text]) surfaces from first-principles.

J Phys Condens Matter

Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

Published: December 2019

The depositions of (1 1 1) and (1 0 0) overlayers of Pd, Pt and Au on the CdS (1 0 [Formula: see text] 0) surface are studied within epitaxial mismatches of 6%-7%, using spin-polarized density functional theory. For both compressively strained and tensile-strained interfaces, the (1 0 0) overlayers were found to be thermodynamically more stable owing to better interfacial matching, and higher surface uncoordination resulting in higher reactivity. Pt(1 1 1) exhibits slip dislocations even for five-atomic-layer thick Pt slabs. Along with the leading metal-S interaction, the interfacial charge transfers indicate a weak metal-Cd interaction which decreases in strength in the order Pd  >  Pt  ∼  Au. For the same substrate area, the accumulation of electronic charge for Pt overlayers is  ∼1.5-2 times larger than that of Pd and Au. The n-type Schottky barriers of Au overlayers with the minimum mismatch are within 0.1 eV of the predictions of Schottky-Mott rule, indicating a relatively ideal, scantily reactive interface structure. This is in clear contrast to the Pt epitaxial overlayers which deviate by 0.6-0.8 eV.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ab3919DOI Listing

Publication Analysis

Top Keywords

1 0 0 overlayers
8
overlayers
6
strained epitaxial
4
epitaxial interfaces
4
interfaces metal
4
metal overlayers
4
overlayers nonpolar
4
nonpolar cds
4
cds [formula
4
[formula text]
4

Similar Publications

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO surfaces (Ov-BiVO), enabling interactions with the oxygen-rich ligands of MIL-101.

View Article and Find Full Text PDF

Gradient Surface Gallium-Doped Hematite Photoelectrode for Enhanced Photoelectrochemical Water Oxidation.

Nano Lett

January 2025

Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, 300350 Tianjin, China.

Hematite is a promising material for photoelectrochemical (PEC) water oxidation, but its photocurrent is limited by bulk charge recombination and poor oxidation kinetics. In this study, we report a high-performance FeO photoanode achieved through gradient surface gallium doping, utilizing a GaO overlayer on FeOOH precursors via atomic layer deposition (ALD) and co-annealing for Ga diffusion. The Ga-doped layer passivates surface states and modifies the band structure, creating a built-in electric field that enhances the charge separation efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • The study uses density functional theory and microkinetic modeling to analyze the growth of hexagonal boron nitride (hBN) on a ruthenium surface, focusing on the process of chemical vapor deposition (CVD).
  • Four main stages of the growth process are detailed: adsorption and deprotonation of borazine, dimerization, stabilization of larger borazine polymers, and the formation of nanoporous intermediates.
  • Findings highlight the importance of the deprotonation sequence in nanostructure formation and provide insights for producing high-quality hBN monolayers, aligning well with experimental data for temperature variations and precursor exposure.
View Article and Find Full Text PDF

Topological Insulators (TIs) are promising platforms for Quantum Technology due to their topologically protected surface states (TSS). Plasmonic excitations in TIs are especially interesting both as a method of characterisation for TI heterostructures, and as potential routes to couple optical and spin signals in low-loss devices. Since the electrical properties of the TI surface are critical, tuning TI surfaces is a vital step in developing TI structures that can be applied in real world plasmonic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!