A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A cepstrum analysis-based classification method for hand movement surface EMG signals. | LitMetric

A cepstrum analysis-based classification method for hand movement surface EMG signals.

Med Biol Eng Comput

Department of Computer Engineering, Turkish Air Force Academy, National Defense University, Yesilyurt, Istanbul, Turkey.

Published: October 2019

It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-019-02024-8DOI Listing

Publication Analysis

Top Keywords

semg signals
16
basic hand
12
hand movements
12
proposed method
12
cepstrum analysis-based
8
hand movement
8
neural network
8
accuracy rate
8
hand
7
signals
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!