While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754361PMC
http://dx.doi.org/10.1007/s10875-019-00670-zDOI Listing

Publication Analysis

Top Keywords

rag1 rag2
12
pathogenicity prediction
8
predicting occurrence
4
occurrence variants
4
variants rag1
4
rag2 widespread
4
widespread genome
4
genome sequencing
4
sequencing ushers
4
ushers era
4

Similar Publications

Phylogeny and Polyploidy Evolution of the Suckers (Teleostei: Catostomidae).

Biology (Basel)

December 2024

Florida Museum of Natural History, University of Florida, 1659 Museum Rd., Gainesville, FL 32611, USA.

Fishes in the cypriniform family Catostomidae (suckers) are evolutionary tetraploids. The use of nuclear markers in the phylogenetic study of this important group has been greatly hindered by the challenge of identifying paralogous copies of genes. In the present study, we used two different methods to separate the gene copies of five single-copy nuclear genes (i.

View Article and Find Full Text PDF

Cutaneous innate lymphoid populations drive IL-17A-mediated immunity in Nannizzia gypsea dermatophytosis.

J Invest Dermatol

December 2024

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, ARGENTINA. Electronic address:

Fungal skin infections significantly contribute to the global human disease burden, yet our understanding of cutaneous immunity against dermatophytes remains limited. Previously, we developed a model of epicutaneous infection with Microsporum canis in C57BL/6 mice, which highlighted the critical role of IL-17RA signaling in anti-dermatophyte defenses. Here, we expanded our investigation to the human pathogen Nannizzia gypsea and demonstrated that skin γδTCRint and CD8/CD4 double-negative βTCR+ T cells are the principal producers of IL-17A during dermatophytosis.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1 infection remains a major global health issue, with around 30 million individuals receiving antiretroviral treatment, where integrase strand-transfer inhibitors (INSTIs) play a key role in effective therapy.
  • The research focuses on evaluating the off-target effects of clinically approved INSTIs on recombinase activating genes (RAG1 and RAG2), crucial for the immune system, using various biochemical and cellular tests.
  • Results indicate that approved INSTIs have minimal to no adverse effects on RAG activity and V(D)J recombination, supporting their continued use in HIV-1 treatment without significant immune system concerns.
View Article and Find Full Text PDF

DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1.

J Biol Chem

December 2024

Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands. Electronic address:

During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the expression of recombinant activating genes (RAG) and B cell receptor (BCR) rearrangements in B lymphocytes from patients with Takayasu arteritis (TA) compared to healthy controls.
  • Results showed significantly higher mRNA and protein levels of RAG1 and RAG2 in B lymphocytes from TA patients, indicating a heightened humoral immune response.
  • Additionally, the number of BCR clonotypes and the presence of IGHV clones were significantly greater in TA patients, suggesting a strong correlation between RAG expression and BCR rearrangement, warranting further research with larger sample sizes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!