A rice allele of PSKR1 functioning in resistance to bacterial leaf streak was identified. Phytosulfokine (PSK), a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, belongs to the group of plant peptide growth factors. The PSK receptor PSKR1 in Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signaling outputs. Here, the LOC_Os02g41890 out of three candidates completely rescued root growth and susceptible to Pseudomonas syringae pv. DC3000 in the Arabidopsis pskr1-3 mutant and was identified as OsPSKR1. This protein was localized to plasma membrane similar to AtPSKR1. The expression of OsPSKR1 was upregulated upon inoculation with RS105, a strain of Xanthomonas oryzae pv. oryzicola (Xoc) that cause bacterial leaf streak in rice. OsPSKR1 overexpression (OE) lines had greater resistance to RS105 than the wild type. Consistently, the expression of pathogenesis-related genes involved in the salicylic acid (SA) pathway was upregulated in the transgenic lines. Overall, OsPSKR1 functions as a candidate PSK receptor and regulates resistance to Xoc by activating the expression of pathogenesis-related genes involved in the SA pathway in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-019-03238-8DOI Listing

Publication Analysis

Top Keywords

bacterial leaf
12
leaf streak
12
resistance bacterial
8
streak rice
8
psk receptor
8
expression pathogenesis-related
8
pathogenesis-related genes
8
genes involved
8
ospskr1
5
identification phytosulfokine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!