The cannabinoid alkyl side-chain represents an important pharmacophore, where genetic targeting of alkyl homologs has the potential to provide enhanced forms of Cannabis for biopharmaceutical manufacture. Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) synthase genes govern dicyclic (CBDA) and tricyclic (THCA) cannabinoid composition. However, the inheritance of alkyl side-chain length has not been resolved, and few studies have investigated the contributions and interactions between cannabinoid synthesis pathway loci. To examine the inheritance of chemical phenotype (chemotype), THCAS and CBDAS genotypes were scored and alkyl cannabinoid segregation analysed in 210 F progeny derived from a cross between two Cannabis chemotypes divergent for alkyl and cyclic cannabinoids. Inheritance patterns of F progeny were non-Gaussian and deviated from Mendelian expectations. However, discrete alkyl cannabinoid segregation patterns consistent with digenic as well as epistatic modes of inheritance were observed among F THCAS and CBDAS genotypes. These results suggest linkage between cannabinoid pathway loci and highlight the need for further detailed characterisation of cannabinoid inheritance to facilitate metabolic engineering of chemically elite germplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684623PMC
http://dx.doi.org/10.1038/s41598-019-47812-2DOI Listing

Publication Analysis

Top Keywords

alkyl side-chain
12
cannabinoid
8
cannabinoid alkyl
8
pathway loci
8
thcas cbdas
8
cbdas genotypes
8
alkyl cannabinoid
8
cannabinoid segregation
8
alkyl
7
inheritance
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!