Histones, the principal protein components of chromatin, contain long disordered sequences, which are extensively post-translationally modified. Although histone chaperones are known to control both the activity and specificity of histone-modifying enzymes, the mechanisms promoting modification of highly disordered substrates, such as lysine-acetylation within the N-terminal tail of histone H3, are not understood. Here, to understand how histone chaperones Asf1 and Vps75 together promote H3 K9-acetylation, we establish the solution structural model of the acetyltransferase Rtt109 in complex with Asf1 and Vps75 and the histone dimer H3:H4. We show that Vps75 promotes K9-acetylation by engaging the H3 N-terminal tail in fuzzy electrostatic interactions with its disordered C-terminal domain, thereby confining the H3 tail to a wide central cavity faced by the Rtt109 active site. These fuzzy interactions between disordered domains achieve localization of lysine residues in the H3 tail to the catalytic site with minimal loss of entropy, and may represent a common mechanism of enzymatic reactions involving highly disordered substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684614PMC
http://dx.doi.org/10.1038/s41467-019-11410-7DOI Listing

Publication Analysis

Top Keywords

histone chaperones
8
highly disordered
8
disordered substrates
8
n-terminal tail
8
asf1 vps75
8
interactions disordered
8
histone
5
disordered
5
histone chaperone
4
chaperone exploits
4

Similar Publications

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.

Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.

View Article and Find Full Text PDF

Regulation of the Hedgehog pathway activity may be supported by coactivators and corepresors of its main effectors- Gli transcription factors. While activation processes are well studied, repression mechanisms remain elusive. We identified chromatin remodelling complex Hira to interact with Gli3R protein, showed that its loss-of-function changes Hh pathway activity, and examined possible mechanism behind the observed effect.

View Article and Find Full Text PDF

Mechanisms of Inheritance of Chromatin States: From Yeast to Human.

Annu Rev Biophys

December 2024

Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA; email:

In this article I review mechanisms that underpin epigenetic inheritance of CpG methylation and histone H3 lysine 9 methylation (H3K9me) in chromatin in fungi and mammals. CpG methylation can be faithfully inherited epigenetically at some sites for a lifetime in vertebrates and, remarkably, can be propagated for millions of years in some fungal lineages. Transmission of methylation patterns requires maintenance-type DNA methyltransferases (DNMTs) that recognize hemimethylated CpG DNA produced by replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!