AI Article Synopsis

Article Abstract

is an important human pathogen whose success is largely attributed to its vast arsenal of virulence factors that facilitate its invasion into, and survival within, the human host. The expression of these virulence factors is controlled by the quorum sensing accessory gene regulator (Agr) system. However, a large proportion of clinical isolates are consistently found to have a mutationally inactivated Agr system. These mutants have a survival advantage in the host but are considered irreversible mutants. Here we show, for the first time, that a fraction of Agr-negative mutants can revert their Agr activity. By serially passaging Agr-negative strains and screening for phenotypic reversion of hemolysis and subsequent sequencing, we identified two mutational events responsible for reversion: a genetic duplication plus inversion event and a poly(A) tract alteration. Additionally, we demonstrate that one clinical Agr-negative methicillin-resistant (MRSA) isolate could reproducibly generate Agr-revertant colonies with a poly(A) tract genetic mechanism. We also show that these revertants activate their Agr system upon phagocytosis. We propose a model in which a minor fraction of Agr-negative strains are phase variants that can revert their Agr activity and may act as a cryptic insurance strategy against host-mediated stress. is responsible for a broad range of infections. This pathogen has a vast arsenal of virulence factors at its disposal, but avirulent strains are frequently isolated as the cause of clinical infections. These isolates have a mutated locus and have been believed to have no evolutionary future. Here we show that a fraction of Agr-negative strains can repair their mutated locus with mechanisms resembling phase variation. The revertants sustain an Agr OFF state as long as they exist as a minority but can activate their Agr system upon phagocytosis. These revertant cells might function as a cryptic insurance strategy to survive immune-mediated host stress that arises during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686034PMC
http://dx.doi.org/10.1128/mBio.00796-19DOI Listing

Publication Analysis

Top Keywords

agr system
16
virulence factors
12
fraction agr-negative
12
agr-negative strains
12
phase variants
8
vast arsenal
8
arsenal virulence
8
revert agr
8
agr activity
8
polya tract
8

Similar Publications

Natrium Alginate and Graphene Nanoplatelets-Based Efficient Material for Resveratrol Delivery.

Gels

December 2024

Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania.

In this study, alginate-based composite beads were developed for the delivery of resveratrol, a compound with therapeutic potential. Two formulations were prepared: one with sodium alginate and resveratrol (AR) and another incorporating graphene nanoplatelets (AGR) to improve drug release control. The beads were formed by exploiting alginate's ability to gel via ionic cross-linking.

View Article and Find Full Text PDF

The Canadian Genomics Research and Development Initiative for Antimicrobial Resistance (GRDI-AMR) uses a genomics-based approach to understand how health care, food production and the environment contribute to the development of antimicrobial resistance. Integrating genomics contextual data streams across the One Health continuum is challenging because of the diversity in data scope, content and structure. To better enable data harmonization for analyses, a contextual data standard was developed.

View Article and Find Full Text PDF

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

Managerial factors affecting milking-abilities of Holstein cattle under intensive production system in Egypt.

Trop Anim Health Prod

January 2025

Department of Animal Production, Faculty of Agriculture, Menoufia University, Shibin Al Kawm, Egypt.

This article aims to explore milking-ability criteria of Holstein dairy cattle under intensive production system in Egypt and investigate some managerial factors that influence them in dairy farms. The data obtained from five herds belong to a commercial intensive production system farm, Egypt. Data included 3509 records.

View Article and Find Full Text PDF

Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!