The fruits of Chinese witch-hazel (Hamamelis mollis, Hamamelidaceae) act as 'drying squeeze catapults', shooting their seeds several metres away. During desiccation, the exocarp shrinks and splits open, and subsequent endocarp deformation is a complex three-dimensional shape change, including formation of dehiscence lines, opening of the apical part and formation of a constriction at the middle part. Owing to the constriction forming, mechanical pressure is increasingly applied on the seed until ejection. We describe a structural latch system consisting of connective cellular structures between endocarp and seed, which break with a distinct cracking sound upon ejection. A maximum seed velocity of 12.3 m s, maximum launch acceleration of 19 853 m s (approx. 2000g) and maximum seed rotational velocity of 25 714 min were measured. We argue that miniscule morphological differences between the inner endocarp surface and seed, which features a notable ridge, are responsible for putting spin on the seed. This hypothesis is further corroborated by the observation that there is no preferential seed rotation direction among fruits. Our findings show that H. mollis has evolved similar mechanisms for stabilizing a 'shot out' seed as humans use for stabilizing rifle bullets and are discussed in an ecological (dispersal biology), biomechanical (seed ballistics) and functional-morphological (fine-tuning and morphospace of functional endocarps) contexts, and promising additional aspects for future studies are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731504 | PMC |
http://dx.doi.org/10.1098/rsif.2019.0327 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.
Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Chemistry, College of Natural and Computational Science, Debre Tabor University, Debre Tabor, Ethiopia.
Background: Oils from various sources are vital nutritional components with a variety of roles in our body. Niger seed (Guzoita abyssinica) is endemic to Ethiopia and is among the major oil seed crops grown in the country. The fatty acid composition and the concentration of other bioactive phytochemicals in it vary with species type, geographical origin, cultivation season, and varietal types.
View Article and Find Full Text PDFChem Biodivers
December 2024
Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10).
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!