Herein, the problem of target tracking in wireless sensor networks (WSNs) is investigated in the presence of Byzantine attacks. More specifically, we analyze the impact of Byzantine attacks on the performance of a tracking system. First, under the condition of jointly estimating the target state and the attack parameters, the posterior Cramer-Rao lower bound (PCRLB) is calculated. Then, from the perspective of attackers, we define the optimal Byzantine attack and theoretically find a way to achieve such an attack with minimal cost. When the attacked nodes are correctly identified by the fusion center (FC), we further define the suboptimal Byzantine attack and also find a way to realize such an attack. Finally, in order to alleviate the negative impact of attackers on the system performance, a modified sampling importance resampling (SIR) filter is proposed. Simulation results show that the tracking results of the modified SIR filter can be close to the true trajectory of the moving target. In addition, when the quantization level increases, both the security performance and the estimation performance of the tracking system are improved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695678 | PMC |
http://dx.doi.org/10.3390/s19153436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!