Single nucleotide polymorphisms (SNPs) are usually the most frequent genomic variants. Directly pedigree-phased multi-SNP haplotypes provide a more accurate view of polymorphic population genomic structure than individual SNPs. The former are, therefore, more useful in genetic correlation with subject phenotype. We describe a new pedigree-based methodology for generating non-ambiguous SNP haplotypes for genetic study. SNP data for haplotype analysis were extracted from a larger Type 1 Diabetes Genetics Consortium SNP dataset based on minor allele frequency variation and redundancy, coverage rate (the frequency of phased haplotypes in which each SNP is defined) and genomic location. Redundant SNPs were eliminated, overall haplotype polymorphism was optimized and the number of undefined haplotypes was minimized. These edited SNP haplotypes from a region containing (DR) and (DQ) both correlated well with HLA-typed DR,DQ haplotypes and differentiated HLA-DR,DQ fragments shared by three pairs of previously identified megabase-length conserved extended haplotypes. In a pedigree-based genetic association assay for type 1 diabetes, edited SNP haplotypes and HLA-typed HLA-DR,DQ haplotypes from the same families generated essentially identical qualitative and quantitative results. Therefore, this edited SNP haplotype method is useful for both genomic polymorphic architecture and genetic association evaluation using SNP markers with diverse minor allele frequencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721696 | PMC |
http://dx.doi.org/10.3390/cells8080835 | DOI Listing |
Orphanet J Rare Dis
January 2025
Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Noninvasive prenatal diagnosis (NIPD) has been proven feasible for non-syndromic hearing loss (NSHL) in singleton pregnancies. However, previous research is limited to the second trimester and the application in twin pregnancies is blank. Here we provide a novel algorithmic approach to assess singleton and twin pregnancies in the first trimester.
View Article and Find Full Text PDFHum Immunol
January 2025
The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China. Electronic address:
Background: Microscopic polyangiitis (MPA) is a severe multisystem autoimmune disease featured by small-vessel vasculitis with few or no immune complex, also has a significant genetic predisposition. Growing evidence has confirmed that STAT4 gene is tightly associated with multiple autoimmune diseases, but its contribution to MPA onset is still elusive.
Objective: The aim was to investigated the association between STAT4 gene polymorphisms (rs7572482, rs7574865 and rs12991409) and MPA susceptibility in a Guangxi population of China.
Int J Mol Sci
January 2025
Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden.
A previous genome-wide association study (GWAS) in colorectal cancer (CRC) patients with gastric and/or prostate cancer in their families suggested genetic loci with a shared risk for these three cancers. A second haplotype GWAS was undertaken in the same colorectal cancer patients and different controls with the aim of confirming the result and finding novel loci. The haplotype GWAS analysis involved 685 patients with colorectal cancer cases and 1642 healthy controls from Sweden.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy.
Obesity is a global epidemic associated with chronic inflammation, oxidative stress, and metabolic disorders. Bariatric surgery is a highly effective intervention for sustained weight loss and the improvement of obesity-related comorbidities. However, post-surgery nutritional deficiencies, including vitamin E, remain a concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!