Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum.

Biomed Pharmacother

College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, China; Kunming Key Laboratory for Metabolic Diseases Prevention and Treatment by Chinese Medicine, 1076 Yuhua Road, Kunming, 650500, China. Electronic address:

Published: September 2019

Background: Mitochondrial dysfunction is an important mechanism of non-alcoholic fatty liver disease (NAFLD). Developing mitochondrial regulators/nutrients from natural products to remedy mitochondrial dysfunction represent attractive strategies for NAFLD therapy. In China, Polygonatum kingianum (PK) has been used as a herb and food nutrient for centuries. So far, studies in which the effects of PK on NAFLD are evaluated are lacking. Our study aims at identifying the effects and mechanism of action of PK on NAFLD based on mitochondrial regulation.

Methods: A NAFLD rat model was induced by a high-fat diet (HFD) and rats were intragastrically given PK (1, 2 and 4 g/kg) for 14 weeks. Changes in body weight, food intake, histological parameters, organ indexes, biochemical parameters and mitochondrial indicators involved in oxidative stress, energy metabolism, fatty acid metabolism, and apoptosis were investigated.

Results: PK significantly inhibited the HFD-induced increase of alanine transaminase, aspartate transaminase, total cholesterol (TC), and low density lipoprotein cholesterol in serum, and TC and triglyceride in the liver. In addition, PK reduced high density lipoprotein cholesterol and liver enlargement without affecting food intake. PK also remarkably inhibited the HFD-induced increase of malondialdehyde and the reduction of superoxide dismutase, glutathione peroxidase, ATP synthase, and complex I and II, in mitochondria. Moreover, mRNA expression of carnitine palmitoyl transferase-1 and uncoupling protein-2 was significantly up-regulated and down-regulated after PK treatment, respectively. Finally, PK notably inhibited the HFD-induced increase of caspase 9, caspase 3 and Bax expression in hepatocytes, and the decrease of expression of Bcl-2 in hepatocytes and cytchrome c in mitochondria.

Conclusion: PK alleviated HFD-induced NAFLD by promoting mitochondrial functions. Thus, PK may be useful mitochondrial regulators/nutrients to remedy mitochondrial dysfunction and alleviate NAFLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109083DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
16
inhibited hfd-induced
12
hfd-induced increase
12
mitochondrial
9
fatty liver
8
liver disease
8
polygonatum kingianum
8
mitochondrial regulators/nutrients
8
remedy mitochondrial
8
food intake
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!