Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To reduce leakage and improve service levels, water companies are increasingly using statistical models of pipe failure using infrastructure, weather and environmental data. However, these models are often built by environmental data scientists with limited in-field experience of either fixing pipes or recording data about network failures. As infrastructure data can be inconsistent, incomplete and incorrect, this disconnect between model builders and field operatives can lead to logical errors in how datasets are interpreted and used to create predictive models. An improved understanding of pipe failure can facilitate improved selection of model inputs and the modelling approach. To enable data scientists to build more accurate predictive models of pipe failure, this paper summarises typical factors influencing failure for 5 common groups of materials for water pipes: 1) cast and spun iron, 2) ductile iron, 3) steel, 4) asbestos cement, 5) polyvinyl chloride (PVC) and 6) polyethylene (PE) pipes. With an improved understanding of why and how pipes fail, data scientists can avoid misunderstanding and misusing infrastructure and environmental data, and build more accurate models of infrastructure failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.114926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!