Solar PV adoption in wastewater treatment plants: A review of practice in California.

J Environ Manage

School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia.

Published: October 2019

This is the first study to assess the current status of solar photovoltaic (PV) adoption across a range of wastewater treatment plant sizes, and to identify the opportunities for solar PV in the wastewater sector. It quantifies solar PV contributions to the energy demand of the wastewater treatment plants and improves knowledge of sector-specific factors influencing PV uptake. California was used as a case study due to its high commitment to solar power and the high data availability. The study compiled and examined data on multiple wastewater treatment plant attributes from 105 Californian plants, representing 78% of total state flows. The analysis focused on the effect of three sector-specific influencing factors: size of wastewater treatment plant, presence/absence of anaerobic digestion and geographical location (urban vs rural). Solar PV adoption was observed to vary significantly with the size of the wastewater treatment plants. Of the 105 plants analysed, 41 installed a solar PV system. Of these 41, 39 were installed in wastewater treatment plants with a flow rate below 50 mega gallons day (MGD). Only two plants with flow above 50 MGD had solar PV installed. In wastewater treatment plants with a flow rate above 5 MGD, solar PV was primarily installed in hybrid configurations with anaerobic digestion. In these plants, biogas contributed 25-65% to the overall energy demand, while solar provided 8-30%. In wastewater treatment plants with a flow rates below 5 MGD, solar PV often represented the only source of renewable energy, producing 30-100% of the energy demand of these plants. Across all the plants analysed, 1 MW was the most adopted solar installation size and solar PV installations were mostly found in wastewater treatment plants in rural settings. While acknowledging multiple other factors of potential influence, these results demonstrate the role of solar PV in wastewater treatment plants under three sector-specific influencing factors. The results will support the sector in making informed decisions over solar PV investments, helping wastewater utilities to transition towards sustainable management practices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.109337DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
44
treatment plants
32
plants flow
16
solar
15
plants
14
wastewater
13
treatment plant
12
energy demand
12
mgd solar
12
treatment
11

Similar Publications

A novel genotype of Babesia microti-like group in Ixodes montoyanus ticks parasitizing the Andean bear (Tremarctos ornatus) in Ecuador.

Exp Appl Acarol

January 2025

Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.

Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.

View Article and Find Full Text PDF

Dental plaque biofilms are the primary etiologic factor for various chronic oral infectious diseases. In recent years, dental plaque shows enormous potential to know about an individual microbiota. Various microbiome studies of oral cavity from different geographical locations reveals abundance of microbial species.

View Article and Find Full Text PDF

Engineered alginate-polyethyleneimine and sludge-aluminosilicate biochar composites for greywater treatment: Performance evaluation and models for designing pilot-scale systems.

Environ Res

January 2025

Department of Environment Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166 Rosenau, Campus Box # 7431, NC 27599, Chapel Hill, North Carolina, USA. Electronic address:

Greywater, originating from kitchen sinks and toilets, constitutes 75-80 % of the domestic wastewater produced in homes and can be reclaimed for non-potable uses. This study synthesized novel sludge-derived aluminosilicates and alginate-polyethyleneimine (PEI) biochar composites. The aluminosilicates offer a sustainable approach to sludge management, while alginate-polyethyleneimine presents a green biochar modification approach.

View Article and Find Full Text PDF

Heavy metal(loid)s and nutrients in sewage sludge in Portugal - Suitability for use in agricultural soils and assessment of potential risks.

Sci Total Environ

January 2025

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. Electronic address:

The presence of heavy metal(loid)s in sewage sludge is a cause of concern and an obstacle to its agricultural valorisation. This study analysed the elemental composition of sewage sludge from 42 Portuguese wastewater treatment plants (WWTPs) during summer and winter, investigating heavy metal(loid) contamination, nutrient content, and potential risks related to sludge application to agricultural soils. Levels of 8 heavy metal(loid)s were investigated, ranging from not detected (Hg) to 5120 mg kg dw (Zn), decreasing in the order Zn > Cu > Cr > Ni > Pb > As>Cd > Hg.

View Article and Find Full Text PDF

Exploiting CotA laccase from Antarctic Bacillus sp. PAMC28748 for efficient mediator-assisted dye decolorization and ABTS regeneration.

Chemosphere

January 2025

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:

Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!