AI Article Synopsis

Article Abstract

Purpose: Over the past decades, the preparation of antibacterial restorative dental adhesives has obtained increasing attention in order to prevent secondary caries. In the present study, a novel essential oil-based antibacterial resin adhesive was prepared and evaluated for dental applications. In this regards, thymol, which is a major phenolic component of thyme essential oil, was incorporated into methacrylate resin matrix and its effect on the physico-mechanical and biological properties of the experimental bonding agent was investigated.

Materials And Methods: Mechanical properties were evaluated via measuring flexural strength, flexural modulus and fracture toughness. Degree of conversion (DC%) of monomers was measured using FTIR spectroscopy. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). The bactericidal activity of composite specimens against Streptococcus mutans (ATCC 35668) was determined based on ASTM E 2180-07.MTT assay was performed to investigate the cytocompatibility of samples. Furthermore, the bonding strength of the adhesives was evaluated through microshear bond test on the caries-free extracted human premolar teeth and the mode of failure was investigated by scanning electron microscopy.

Results: Thymol-doped resin adhesive exhibited comparable degree of conversion to the control resin adhesive. The plasticizing behavior of thymol slightly decreased the flexural modulus and glass transition temperature of the thymol containing specimens, even though; it caused significant increases in fracture toughness of adhesive. The results represented appropriate antibacterial activity as well as suitable cytocompatibility. Furthermore, the thymol-doped resin adhesive showed comparable adhesive strength to the control.

Conclusion: The thymol is extremely compatible with the methacrylate resin restorative system and completely fulfills all requirements of a good bactericidal component in construction of an ideal enamel bonding system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2019.103378DOI Listing

Publication Analysis

Top Keywords

resin adhesive
16
enamel bonding
8
bonding system
8
bonding strength
8
methacrylate resin
8
flexural modulus
8
fracture toughness
8
degree conversion
8
thymol-doped resin
8
resin
6

Similar Publications

Colophony is a solid form of resin derived from coniferous trees that has both adhesive and water-resistant properties. For these reasons, this allergen is incorporated into many personal care products, medications, and occupational materials, and is thus commonly implicated in allergic contact dermatitis. Dedicated "dental" allergen series often include colophony, but dermatologists are likely not well-versed on its use in a dental setting.

View Article and Find Full Text PDF

Acid resistance and bond strength of calcium-containing adhesive on ename.

Int Dent J

January 2025

Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

Introduction And Aims: Marginal sealing by enamel bonding is important to enhance the durability of the restoration and prevent secondary caries after operative procedure. This study aimed to evaluate the enamel acid resistance and bond strength of an experimental calcium-containing adhesive system.

Methods: All materials were provided by Kuraray Noritake Dental, Inc.

View Article and Find Full Text PDF

Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.

Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials.

View Article and Find Full Text PDF

Purpose: This systematic review evaluated the effect of different printing orientations on the physical-mechanical properties and accuracy of resin denture bases and related specimens.

Study Selection: Utilizing PRISMA 2020 guidelines, a comprehensive search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted until June 2024. Included studies examined the accuracy, volumetric changes, and mechanical or physical properties of 3D-printed denture bases in various orientations.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of a chlorhexidine digluconate solution (CHX) applied as an antiproteolytic agent for controlling erosive tooth wear or as part of the adhesive treatment on long-term bond strength to eroded dentin. Dentin specimens were abraded with a 600-grit silicon carbide (SiC) paper for 1 min (sound dentin - S), subsequently treated with 2% CHX for 1 min (with excess removed, followed by a 6-hour rest), and eroded by exposure to Coca-Cola for 5 min, three times a day, for 5 days (CHX-treated and eroded dentin - CHXE), or only eroded (eroded dentin - E). The specimens were acid-etched (15 s), rinsed (30 s), dried (15 s), and rehydrated with 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!