Background: Xanthohumol (XN, a hop-derived prenylflavonoid) was found to exert anticancer effects on various cancer types. However, the mechanisms by which XN affects the survival of multiple myeloma cells (MM) are little known. Therefore, our study was undertaken to address this issue.

Methods: Anti-proliferative activity of XN towards two phenotypically distinct MM cell lines U266 and RPMI8226 was evaluated with the MTT and BrdU assays. Cytotoxicity was determined with the LDH method, whereas apoptosis was assessed by flow cytometry and fluorescence staining. The expression of cell cycle- and apoptosis-related proteins and the activation status of signaling pathways were estimated by immunoblotting and ELISA assays.

Results: XN reduced the viability of RPMI8226 cells more potently than in U266 cells. It blocked cell cycle progression through downregulation of cyclin D1 and increased p21 expression. The marked apoptosis induction in the XN-treated RPMI8226 cells was related to initiation of mitochondrial and extrinsic pathways, as indicated by the altered p53, Bax, and Bcl-2 protein expression, cleavage of procaspase 8 and 9, and elevated caspase-3 activity. The apoptotic process was probably mediated via ROS overproduction and MAPK (ERK and JNK) activation as N-acetylcysteine, or specific inhibitors of these kinases prevented the XN-induced caspase-3 activity and, hence, apoptosis. Moreover, XN decreased sIL-6R and VEGF production in the studied cells.

Conclusions: ERK and JNK signaling pathways are involved in XN-induced cytotoxicity against MM cells.

General Significance: The advanced understanding of the molecular mechanisms of XN action can be useful in developing therapeutic strategies to treat multiple myeloma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2019.08.001DOI Listing

Publication Analysis

Top Keywords

sil-6r vegf
8
vegf production
8
multiple myeloma
8
signaling pathways
8
rpmi8226 cells
8
caspase-3 activity
8
erk jnk
8
xanthohumol exhibits
4
exhibits anti-myeloma
4
activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!