The directed migration of cells sculpts the embryo, contributes to homeostasis in the adult, and, when dysregulated, underlies many diseases [1, 2]. During these processes, cells move singly or as a collective. In both cases, they follow guidance cues, which direct them to their destination [3-6]. In contrast to single cells, collectively migrating cells need to coordinate with their neighbors to move together in the same direction. Recent studies suggest that leader cells in the front sense the guidance cue, relay the directional information to the follower cells in the back, and can pull the follower cells along [7-19]. In this manner, leader cells steer the collective and set the collective's overall speed. However, whether follower cells also participate in steering and speed setting of the collective is largely unclear. Using chimeras, we analyzed the role of leader and follower cells in the collectively migrating zebrafish posterior lateral line primordium. This tissue expresses the chemokine receptor Cxcr4 and is guided by the chemokine Cxcl12a [20-23]. We find that leader and follower cells need to sense the attractant Cxcl12a for efficient migration, are coupled to each other through cadherins, and require coupling to pull Cxcl12a-insensitive cells along. Analysis of cell dynamics in chimeric and protein-depleted primordia shows that Cxcl12a-sensing and cadherin-mediated adhesion contribute jointly to direct migration at both single-cell and tissue levels. These results suggest that all cells in the primordium need to sense the attractant and adhere to each other to coordinate their movements and migrate with robust directionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687087PMC
http://dx.doi.org/10.1016/j.cub.2019.06.061DOI Listing

Publication Analysis

Top Keywords

follower cells
20
cells
14
collectively migrating
12
migrating cells
8
cells collectively
8
leader cells
8
leader follower
8
follower
5
cadherin-mediated cell
4
cell coupling
4

Similar Publications

Breast cancer is a significant health challenge worldwide, and disproportionately affects women of African ancestry (AA) who experience higher mortality rates relative to other racial/ethnic groups. Several studies have pointed to biological factors that affect breast cancer outcomes. A recently discovered stromal cell population that expresses P ROCR, Z EB1 and P DGFRα (PZP cells) was found to be enriched in normal healthy breast tissue from AA donors, and only in tumor adjacent tissues from donors of European ancestry (EA).

View Article and Find Full Text PDF

NHSL3 controls single and collective cell migration through two distinct mechanisms.

Nat Commun

January 2025

Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.

View Article and Find Full Text PDF

An irreversible thermodynamic model of prebiological dissipative molecular structures inside vacuoles at the surface of the Archean Ocean.

Biosystems

January 2025

Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.

A prebiotic model, based in the framework of thermodynamic efficiency loss from small dissipative eukaryote organisms is developed to describe the maximum possible concentration of solar power to be dissipated on topological circular molecules structures encapsulated in lipid-walled vacuoles, which floated in the Archean oceans. By considering previously, the analysis of 71 species examined by covering 18 orders of mass magnitude from the Megapteranovaeangliae to Saccharomyces cerevisiae suggest that in molecular structures of smaller masses than any living being known nowadays, the power dissipation must be directly proportional to the power of the photons of solar origin that impinge them to give rise to the formation of more complex self-assembled molecular structures at the prebiotic stage by a quantum mechanics model of resonant photon wavelength excitation. The analysis of 12 circular molecules (encapsulated in lipid-walled vacuoles) relevant to the evolution of life on planet Earth such as the five nucleobases, and some aromatic molecules as pyrimidine, porphyrin, chlorin, coumarin, xanthine, etc.

View Article and Find Full Text PDF
Article Synopsis
  • Angiogenesis, the process of forming new blood vessels, is essential for tissue growth and repair, and is often disrupted in various diseases.
  • The movement of endothelial cells during angiogenesis is coordinated by asymmetric divisions of tip cells, leading to daughter cells with different sizes and behaviors, crucial for effective blood vessel formation.
  • A novel method for live-imaging mitotic spindle positioning in endothelial cells of developing zebrafish embryos allows for detailed observation of spindle dynamics, applicable to other tissues that undergo similar asymmetric divisions.
View Article and Find Full Text PDF

Unlabelled: Social behaviors such as cooperation are crucial for mammals. A deeper knowledge of the neuronal mechanisms underlying cooperation can be beneficial for people suffering from pathologies with impaired social behavior. Our aim was to study the brain activity when two animals synchronize their behavior to obtain a mutual reinforcement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!