Replacing liquid electrolytes with solid ones can provide advantages in safety, and all-solid-state batteries with solid electrolytes are proposed to solve the issue of the formation of lithium dendrites. In this study, a crosslinked polymer composite solid electrolyte was presented, which enabled the construction of lithium batteries with outstanding electrochemical behavior over long-term cycling. The crosslinked polymeric host was synthesized through polymerization of the terminal amines of O,O-bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol and terminal epoxy groups of bisphenol A diglycidyl ether at 90 °C and provided an amorphous matrix for Li dissolution. This composite solid electrolyte containing Li salt and garnet filler exhibited high flexibility, which supported the formation of favorable interfaces with the active materials, and possessed enough mechanical strength to suppress the penetration of lithium dendrites. Ionic conductivities higher than 5.0×10  S cm above 45 °C were obtained as well as a wide electrochemical stability window (>4.51 V vs. Li/Li ) and a high Li diffusion coefficient (≈16.6×10  m  s ). High cycling stability (>500 cycles or 1000 h) was demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856689PMC
http://dx.doi.org/10.1002/cssc.201901587DOI Listing

Publication Analysis

Top Keywords

solid electrolyte
12
lithium batteries
8
lithium dendrites
8
composite solid
8
solid
5
lithium
5
crosslinked polyethyleneglycol
4
polyethyleneglycol solid
4
electrolyte dissolving
4
dissolving lithium
4

Similar Publications

LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.

View Article and Find Full Text PDF

Deciphering pH Mismatching at the Electrified Electrode-Electrolyte Interface towards Understanding Intrinsic Water Molecule Oxidation Kinetics.

Angew Chem Int Ed Engl

January 2025

Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Control of Two Solid Electrolyte Interphases at the Negative Electrode of an Anode-Free All Solid-State Battery based on Argyrodite Electrolyte.

Adv Mater

January 2025

Materials Science and Engineering Program, Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Anode-free all solid-state batteries (AF-ASSBs) employ "empty" current collector with three active interfaces that determine electrochemical stability; lithium metal - Solid electrolyte (SE) interphase (SEI-1), lithium - current collector interface, and collector - SE interphase (SEI-2). Argyrodite LiPSCl (LPSCl) solid electrolyte (SE) displays SEI-2 containing copper sulfides, formed even at open circuit. Bilayer of 140 nm magnesium/30 nm tungsten (Mg/W-Cu) controls the three interfaces and allows for state-of-the-art electrochemical performance in half-cells and fullcells.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic-electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur-MIEC interfaces in addition to traditional three-phase boundaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!