One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction is π-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zeeman effect. Here, we report the observation of Zeeman-effect-induced 0-π transitions in Bi_{1-x}Sb_{x}, three-dimensional Dirac semimetal-based Josephson junctions. The large in-plane g factor allows tuning of the Josephson junctions from 0 to π regimes. This is revealed by measuring a π phase shift in the current-phase relation measured with an asymmetric superconducting quantum interference device (SQUID). Additionally, we directly measure a nonsinusoidal current-phase relation in the asymmetric SQUID, consistent with models for ballistic Josephson transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.026802 | DOI Listing |
Materials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFNat Commun
January 2025
Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-PHELIQS, 38000, Grenoble, France.
Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport.
View Article and Find Full Text PDFAdv Mater
January 2025
Oxford Quantum Circuits, Thames Valley Science Park, Shinfield, Reading, RG2 9LH, UK.
A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.
View Article and Find Full Text PDFACS Nano
January 2025
Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.
View Article and Find Full Text PDFNat Commun
January 2025
NanoLund and Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden.
Nonlinear effects play a central role in photonics as they form the foundation for most of the device functionalities such as amplification and quantum state preparation and detection. Typically the nonlinear effects are weak and emerge only at high photon numbers with strong drive. Here we present an experimental study of a Josephson junction -based high-impedance resonator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!