Monolayer WSe_{2} is an intriguing material to explore dark exciton physics. We have measured the photoluminescence from dark excitons and trions in ultraclean monolayer WSe_{2} devices encapsulated by boron nitride. The dark trions can be tuned continuously between negative and positive trions with electrostatic gating. We reveal their spin-triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under a magnetic field. The dark trion binding energies are 14-16 meV, slightly lower than the bright trion binding energies (21-35 meV). The dark trion lifetime (∼1.3 ns) is two orders of magnitude longer than the bright trion lifetime (∼10 ps) and can be tuned between 0.4 and 1.3 ns by gating. Such robust, optically detectable, and gate tunable dark trions may help us realize trion transport in two-dimensional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.027401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!