We present an approach to studying optical band gaps in real solids in which quantum Monte Carlo methods allow for the application of a rigorous variational principle to both ground and excited state wave functions. In tests that include small, medium, and large band gap materials, optical gaps are predicted with a mean absolute deviation of 3.5% against experiment, less than half the equivalent errors for typical many-body perturbation theories. The approach is designed to be insensitive to the choice of density functional, a property we exploit in order to provide insight into how far different functionals are from satisfying the assumptions of many-body perturbation theory. We explore this question most deeply in the challenging case of ZnO, where we show that, although many commonly used functionals have shortcomings, there does exist a one-particle basis in which perturbation theory's zeroth-order picture is sound. Insights of this nature should be useful in guiding the future application and improvement of these widely used techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.036402DOI Listing

Publication Analysis

Top Keywords

many-body perturbation
12
real solids
8
optical gaps
8
perturbation theory
8
variational excitations
4
excitations real
4
solids optical
4
gaps insights
4
insights many-body
4
perturbation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!